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INTRODUCTION 

I t  is a great sa t is fac t ion  to present th is volume to the sc i en t i f i c  community. 
For, i t  contains reports which, I bel ieve,  stand out in qua l i t y  as well as ac tua l i t y .  
Therefore, my f i r s t  word is addressed to the authors of these reports thanking them 
for  the i r  enthousiastic co l laborat ion as inv i ted speakers to the " In ternat ional  
Conference on Dynamical Cr i t i ca l  Phenomena and Related Topics", held at the Universi ty 
of Geneva, Switzerland, from 2 to 6 Apri l  1979, in short, the Cr i t i ca l  Dynamics 
Conference - CDC 79. I also thank the inv i ted speakers for  having submitted the i r  
manuscripts quickly so that the remarkable freshness of the results reported in these 
proceedings is not impared by delays of publ icat ion.  

I t  was the in tent ion ,  that the program for  CDC 79 should cover dynamical pheno- 
mena not only in the usual c r i t i c a l  domain of closed, equi l ibr ium systems but also 
around i n s t a b i l i t i e s  of open, non-equil ibrium systems. This "opening" towards a new 
and fastdeveloping f i e l d  contained some r isks,  as was pointed out by several experts 
asked for the i r  opinion about the in terest  of such a conference back in March 1978. 
In order to ar r ive at a program which was i n te rna l l y  "at equ i l ib r ium",  the border- 
l i ne  was drawn by l im i t a t i on  to physical systems, thus excluding endeavours into 
chemistry, or even fur ther ,  into l i f e  and social sciences. 

The v i c i n i t y  in time of several meetings of a s im i la r  kind presented a certain 
danger for  CDC 79, as signaled by a number of the experts contacted for  advice. 
These meetings are l i s ted  below because some of them are referred to in the cont r i -  
butions to CDC 79 and have produced proceedings of in terest  : 

- The " In ternat ional  Symposium on Nonlinear Nonequilibrium S ta t i s t i ca l  Mechanics" 
held in Kyoto, Japan, on July 10-14, 1978, and chaired by H. Mori; 

- the 17th Internat ional  Solvay Conference on Physics on "Order and Fluctuations in 
Equil ibrium and Non-Equilibrium S ta t i s t i ca l  Mechanics" held in Brussels, Belgium, 
on November 20-23, 1978, and directed by I. Prigogine; 

- the 1979 Midwinter Solid State Research Conference on "Non-Linear and Non-Equilib- 
rium Phenomena in Condensed Matter" held in Laguna Beach, Ca l i fo rn ia ,  on January 
15-19, 1979, and chaired by G. Ahlers and B. Huberman; 

- the "6th Internat ional  Seminar on Phase Transit ions and Cr i t i ca l  Phenomena in 
Solids and Liquids" held in Tr ieste,  I t a l y ,  on March 26-28, 1979, and chaired by 
C. Di Castro; 

- the " In ternat ional  Symposium on Synergetics" held in Elmau Castle, Bavaria, on 
Apri l  30 - May 5, 1979, and directed by H. Haken. 

I f  these meetings had at a l l  been dangerous to CDC 79, i t  may have been with 
regard to par t i c ipa t ion  but cer ta in ly  not with regard to qua l i ty .  In fact ,  whi le 
many of the experts in the f i e l d  unfortunately did not attend, the CDC 79 community 
turned out to be a motivated, coherent, enthousiastic and surpr is ing ly  young group, 
as was evident from the qua l i ty  of the discussions. 

These discussions would actua l ly  have merited publ icat ion,  as would have the 
contributed papers. However, reasonable size and quick publ icat ion of the proceedings 
were considered of primary importance, and I bel ieve that the f i na l  product f u l l y  
j u s t i f i e s  this reasoning. S t i l l ,  in order to reta in some information about the cont r i -  
buted papers, the l i s t  of contents of the Abstract-Handbook (which contained the 
abstracts of a l l  contr ibut ions and was handed to each par t ic ipant  at CDC 79) is 
reproduced here with only minor modif icat ions, in place of a simple l i s t  of  contents. 
In th is l i s t  of c o ~ b u t i o ~  a l l  inv i ted lectures, which alone are printed in this 
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volume, f igure with t he i r  paper numbers whi le  the contr ibuted papers are only l i s ted  
by t i t l e  and have no page numbers attached. 

A l l  contr ibut ions are grouped into the seven topics which formed the underlying 
s t ructure of the program. Making use of the a d d ~ s  l i s t  of pa~u~Le~LpaKut~ included as 
an appendix, i t  w i l l  be possible to obtain more ample information d i r ec t l y  from the 
authors of the contr ibuted papers. In th is  way i t  is hoped that these proceedings 
w i l l  o f fe r  maximum information at minimum cost both in vol;ume and in time delay. 

The f i r s t  topic of the program was a review of the theoret ica l  methods and was 
meant as an in t roduct ion to the conference. In his comparison of mode-coupling theory 
and the dynamical renormalizat ion group method, Prof. Gunton c lea r l y  showed the extent 
and l im i t s  of the equivalence between the two approaches. Prof. Janssen gave a review 
of the elegant f i e l d - t h e o r e t i c  method, which had been introduced in to  c r i t i c a l  dynamics 
by himself and by De Dominicis, and also pointed to new appl icat ions,  some of which 
were discussed in contr ibuted papers. The p a r t i c u l a r i t i e s  and d i f f i c u l t i e s  of c r i t i -  
cal dynamics in the ordered phase and the role of Goldstone modes were discussed by 
Prof. Sz~pfalusy. 

Although not t rue l y  separated from the f i r s t  top ic ,  the real space dynamical 
renormalizat ion group methods have assumed a qui te d i s t i n c t  importance in present-day 
research, mainly because of t he i r  a p p l i c a b i l i t y  to low-dimensional systems. While 
Prof. Suzuki's lecture,  as well as the other cont r ibut ions,  gave an impressive view 
of the problems s t i l l  ahead, the beaut i fu l  report by Prof. Mazenko took up the 
question at a more fundamental level and was f u l l  of promise. 

In view of the very recent break-through in the understanding of c r i t i c a l  
damping of second sound in l i qu id  Helium, a f u l l  day was devoted to th is  substance. 
The la tes t  measurements of the second sound damping and other ef fects of c r i t i c a l  
dynamics obtained with powerful l i g h t  scat ter ing techniques were the subject of an 
i l l um ina t ing  report by Prof. Greytak. Dr. P e l i t i  reviewed the theory by De Dominicis 
and himself ,  which for  the f i r s t  time had exhib i ted the discrepancy between theory 
and experiment. The f i na l  explanation of th is  discrepancy by Prof. Ferrel l  and his 
col laborators Dr. Bhattacharjee and Dr. Dohm was reported for  the f i r s t  time at 
CDC 79 by these three authors. The abundant experimental data obtained near the t r i -  
c r i t i c a l  point of He3-He 4 mixtures were reviewed by Prof. Meyer whi le the theoret ical  
aspect was also contained in Prof. Gunton,s and Dr. P e l i t i ' s  ta lks.  

In view of the s t i l l  controversal question of whether the central peak is an 
i n t r i n s i c  feature of c r i t i c a l  dynamics near s t ructura l  phase t rans i t i ons ,  a panel 
was organized on th is  subject. The very la tes t  experimental and theoret ical  develop- 
ments together wi th an extensive h i s to r i c  overview was presented by Prof. MUller. 
A second panel discussion devoted to the problems l e f t  open by th is  conference was 
directed by Prof. Mazenko. 

Two other important topics of c r i t i c a l  dynamics could only be touched, namely 
low-dimensional systems and systems with random parameters. Concerning the f i r s t  
top ic ,  Prof. Sj~lander reported on exact resul ts  obtained for  the one-dimensional 
Heisenberg chain, which was supplemented by some resul ts  fo r  two dimensions by 
Dr. Reiter. Unfortunately,  i t  had not been possible to have a report on the exc i t ing  
new resul ts  for  two-dimensional two-component systems (Helium f i lms) .  But instead, 
there was an expert report by Prof. De Dominicis on the sophist icated theoret ical  
methods developed fo r  systems wi th randomness. 

Much emphasis was also given to the experimental aspect in the fo l lowing topic 
• \ . . . . . .  

concernlng hydrodynamlc instab111tles. Here, Prof. Berge and his group reported the i r  
imaginative l i g h t  scat ter ing work, most of which was communicated for  the f i r s t  time 



at CDC 79. Bergs also discussed the t rans i t ion  to turbulence, emphasizing the impor- 
tance of the aspect ra t i o  of the system. The formidable theoret ica l  problems related 
with both hydrodynamic i n s t a b i l i t i e s  and turbulence were discussed respect ively by 
Prof. Velarde and Dr. Fournier, the l a t t e r  report ing also on some attempts to apply 
renormalizat ion group methods to turbulence. 

The last  topic was devoted to c r i t i c a l  dynamics far  away from equi l ibr ium. Here 
again CDC 79 witnessed a f i r s t  report ,  namely the break-through achieved by Prof. 
Kawasaki and his co l laborator  Dr. Onuki in the problem of a shear f low of a l i qu id  
near i ts  c r i t i c a l  point. I t  was a remarkable coincidence that the experimental ver i -  
f i ca t i on  of one of Kawasaki's predict ions was also f i r s t  reported at CDC 79 by 
Beysens and Gbadamassi from Prof. Berg~'s group. 

Prof. Kawasaki also reviewed other systems which are far  away from equi l ibr ium 
and which may be analyzed by his new theory. One was non-equil ibr ium superconductivity 
which, due to i ts  importance, would have deserved an independent account. Instead, 
the classic far-away-from-equi l ibr ium system , namely the laser,  was b r i l l i a n t l y  
reviewed by Prof. Arecchi, and many contributed papers on non-equi l ibr ium problems 
were to fo l low. 

Having mentioned some missing topics, i t  is worth adding that the program of 
CDC 79 was probably a major cause for  a st imulat ing conference. This program grew 
out of a col laborat ion with Michel Droz for  which I am most grateful  to him. I also 
thank Michel and my other associates, as well as the secretar ies, accountants and 
pr inters for  the i r  unassuming but e f f i c i e n t  presence whenever i t  was needed. 

But i f  CDC 79 succeeded with only a local s ta f f  of three, i t  was also due to 
i ts  th i rd  member, Mrs. Christ ine Baly. She was not only the helpful and e f f i c i e n t  
Conference secretary but contributed s i gn i f i can t l y  to the shaping of the social 
program : the excursion to CERN and to the famous Bodmer co l lec t ion  of ancient 
manuscripts and ar t  objects, as well as the h igh-sp i r i ted banquet in the cast le 
of the h is to r ic  Madame de Sta~l at Coppet with the authentic Swiss fo l k lo re .  

A par t i cu la r  word of thanks is due to the author i t ies  of the Canton and the 
City of Geneva who so graciously offered the cocktai l  at the elegant Palais Eynard 
but, more i nd i rec t l y ,  are also at the or ig in  of the excel lent  f a c i l i t i e s  at the 
new Sciences I I  bui ld ing.  

Obviously, without the sponsors, there would have been no CDC 79. Therefore, 
I here re i te ra te  my thanks to them in the name of the par t ic ipants ,  above a l l  to 
the Swiss National Science Foundation, but also to the Fond General of Geneva Univer- 
s i t y ,  to the Internat ional  Union of Pure and Applied Physics and to the Facult~ des 
Sciences, the Section de Physique and the D~partement de Physique Th~orique of Geneva 
Universi ty.  I th ink,  the present proceedings are the best proof for  the good use made 
of t he i r  funds. 

Charles P. Enz 

Geneva, May 6, 1979 
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Mode Coupling Theory in Relation to the 

Dynamical Renormalization Group Method 

J. D. Gunton 

Physics Department 

Temple Univers i ty  

Phi ladelphia,  Pa. 19122 

A review is given of the re la t ionsh ip  between the mode coupling 

and renormalization group theories of c r i t i c a l  dynamics. A b r i e f  discuss- 

ion is given of the o r i g i n  of the semiphenomenological nonl inear Langevin 

equations of motion on which both theor ies are usual ly based. A summary of 

the basic approximations and l im i ta t i ons  of the mode coupling theory is pre- 

sented. I t  is noted that  although the renormalization group approach repre- 

sents a more fundamental theory of  c r i t i c a l  dynamics, the theories are i n t i -  

mately related. In pa r t i cu la r  i t  is shown that  to lowest order in ~ : d c -d, 

where for  d>d c conventional theory is va l i d ,  the renormalizat ion group equa- 

t ions for  several d i f f e ren t  models of c r i t i c a l  dynamics are related by a sim- 

ple transformation to those obtained from mode coupling theory. A model of 

the c r i t i c a l  dynamics of f l u i ds  is discussed in some deta i l  to compare ex- 

p l i c i t l y  the two theories. 



I .  Introduct ion 

The development of the modern theory of dynamic c r i t i c a l  phenomena provides an 

in te res t ing  example of the evolut ionary nature of s c i e n t i f i c  progress. I t  is perhaps 

worthwhile to summarize here the basic physical ideas that have led to what we 

now consider a successful dynamical theory. At least  s ix  major contr ibut ions stand 

out in retrospect.  The f i r s t  was the concept that the re laxat ion time to approach 

equi l ib r ium diverges as one approaches a c r i t i c a l  point .  This was c lea r l y  formulated 

in the so-cal led conventional theory of c r i t i c a l  slowing down developed independently 

by van Hove I and Landau and Khalatnikov 2. This theory assumes that the k ine t ic  coef- 

f i c i e n t  for  the order parameter remains f i n i t e  at the c r i t i c a l  point .  The anomaly in 

the re laxat ion rate is then a t t r ibu ted completely to the divergence in the order pa- 

rameter s u s c e p t i b i l i t y ,  since in general the re laxat ion rate is given by the ra t i o  of 

the transport  coe f f i c i en t  to the s ta t i c  suscep t i b i l i t y .  Thus the o r ig in  of  the dynam- 

ic  anomaly is assumed to be completely thermodynamic in o r ig in .  This theory is in -  

va l id  for  real systems, but has been useful in providing some qua l i t a t i ve  understand- 

ing of c r i t i c a l  dynamics. In addi t ion,  of course, i t  is now known that conventional 

theory is va l id  for  large enough dimensionality~ d. This has provided the basis for  

the recent successful G-expansion in dynamics, where ~- = d c d, with d c being the 

dimensional i ty such that  for  d > d c conventional theory is va l id .  

The second major theoret ical  advance came with the work of Fixman 3 who proposed 

mechanisms by which the k inet ic  coef f i c ien ts  themselves could diverge at a c r i t i c a l  

point .  These ideas were more f u l l y  developed by Kawasaki 4'5 and Kadanoff and Swif t  6 

in what is now known as mode coupling theory. In general th is  work involved the basic 

idea that nonl inear couplin~between the slow dynamical modes (the conserved variables 

and the order parameter) can lead to divergences in k inet ic  c o e f f i c i e n t .  In par t icu-  

l a r  the nonl inear couplings spec i f i ca l l y  considered in these theories were of a non- 

d iss ipa t ive  nature. 

A th i rd , c l ose l y  related advance was the development of phenomenological nonl inear 

equat ions  of motion in which the ea r l i e r  i n t u i t i v e  mode coupling approach was put on 

a ~rmer theoret ical  basis, in such a way that detai led calculat ions of cor re la t ion 

and response funct ions,  for  example, could be performed. The pioneer work in th is  

f i e l d  is that of Kawasaki 4'5 who derived these phenomenological nonl inear Langevin 

equat io~from exact, generalized nonl inear Langevin equations with memory. I t  would 

seem in retrospect that th is  th i rd  development is one of the major theoret ica l  ad- 

vances in the f i e l d ,  since these equations now serve as a basis for  both mode coupling 

and renormalization group ca lcu la t ions.  The next s i gn i f i can t  idea came with the ad- 

vent of the renormalization group in dynamics as developed o r i g i n a l l y  by Halperin, 

Hohenberg and Ma 7'8, fo l lowing the fundamental work of Wilson 9 in equ i l ib r ium c r i t i c a l  



phenomena. The idea that emerged from th is  or ig ina l  work was that there exists a 

second source of nonl inear couplings between the slow modes (gross var iables) which 

are of a d iss ipat ive nature and which can cause k inet ic  coef f i c ien ts  for  re laxat ional  

models to vanish at the c r i t i c a l  point .  These d iss ipat ive  couplings can also be of 

importance in determining c r i t i c a l  exponents and scal ing f u n c t i o n s .  I t  should be 

noted that  such couplings are present in the phenomenological nonl inear equations of 

motion developed in the mode coupling theory, but has been overlooked in the or ig ina l  

mode coupling approximations for  the Ginzburg-Landau free energy funct iona l .  

A f i f t h  s i gn i f i can t  development was the notion of un ive rsa l i t y  classes, whose 

o r i g in  l i es  in equi l ibr ium c r i t i c a l  phenomena. I ts  extension to dynamics was devel- 

oped in the mode coupling theory where,for example, i t  is clear that the Poisson brack- 

ets which determine the non-d iss ipat ive,  "streaming" terms in the equations of motion 

are important in determining to which un ive rsa l i t y  class a given system belongs. How- 

ever i t  is now quite clear that the natural theoret ica l  framework for  discussing dy- 

namic un ive rsa l i t y  classes is the renormalization group. Further discussion of th is  

point  is given in the excel lent  review a r t i c l e  by Hohenberg and Halperin 8. F ina l l y ,  

we end th is  summary of the main developments in the evolut ion of our understanding of 

c r i t i c a l  dynamics by noting the very useful idea of dynamical scal ing,  as f i r s t  sug- 

gested by Ferrel l  and col laborators and developed by Halperin and Hohenberg. A com- 

plete discussion of th is  work is found in reference 8. Although we do not t reat  th is  

idea here, i t  w i l l  be dealt  with at th is  meeting with par t i cu la r  reference to the 

- t r ans i t i on  in 4He. This has long posed a challenge to our theory of c r i t i c a l  dy- 
8 namics , but recent work (to be discussed at th is  meeting) by Ferrel l  and Dohm seems 

to represent a break through in th is  area. A discussion of the current experimental 

status and i t s  comparison with the recent theory is given by Greytak in th is  volume. 

We now turn to the purpose of th is  present paper, which is to discuss the mode 

coupling theory in re la t ion  to the renormalization group. Before discussing th is  

subject in greater deta i l  in la te r  sections, we summarize our main conclusions here. 

To begin wi th ,  i t  is now quite clear that the renormalization group is an improvement 

over i t s  mode coupling predecessor. However, in fairness to the mode coupling work, 

i t  is important to note that  the renormalization group involves the same equations of 

motion and ideas as developed in mode coupling. At present the major improvement in 

the theory l ies  in the development of the ~-expansion in dynamics. There are several 

spec i f ic  areas in which one can see the improvement in the theory. F i r s t ,  the ~ - e x -  

pansion provides a more accurate treatment of nonl inear couplings, at least for  small 

E. I t  also provides a systematic way to prove scal ing re lat ions and to calculate 

exponents and scal ing funct ions,  again at least for  small ~ . Second, the renormal- 

iza t ion group has provided a refinement or c l a r i f i c a t i o n  of the nonl inear Langevin 



equations of motion. Two good examples of this are the re laxat ional  (k inet ic  Ising) 

models and the model of 3He - 4He t r i c r i t i c a l  dynamics. In both cases the improved 

model equations resul t  from an e x p l i c i t  treatment of nonlinear d iss ipat ive couplings 

not considered in e a r l i e r  mode coupling work. Third, as noted e a r l i e r  the renormal- 

izat ion group provides a natural way in which to attack the problem of iden t i f y ing  

un iversa l i t y  classes. According to this concept, a l l  members of a given un iversa l i t y  

class have essent ia l l y  the same c r i t i c a l  dynamics. F ina l l y ,  and perhaps most promis- 

ing for  future theory, the development of the renormalization group has allowed the 

poss ib i l i t y  of developing new and perhaps powerful methods for  studying c r i t i c a l  dy- 

namics, pa r t i cu la r l y  in low dimensions. One promising new advance has been the ex- 

tension of real space renormalization group methods to c r i t i c a l  dynamics. This is 

reviewed by Mazenko and by Suzuki in this volume. 

Although the results are s t i l l  quite prel iminary and even somewhat controversial 

this does seem to provide a promising new d i rect ion of research for what is s t i l l  one 

of the major areas of s t a t i s t i ca l  physics. 

The out l ine  of this paper is the fo l lowing.  In section I I  we b r i e f l y  review 

the or ig in  of the semiphenomenological equations of motion which form the basis of 

both the mode coupling and renormalization group theories. In retrospect as noted 

above i t  would appear that one of the major accomplishments of mode coupl int  theory 

was the der ivat ion of these semimacroscopic equations from the microscopic L i ouv i l l e  

equations. In section I I I  we discuss the approximations made by Kawasaki in develop- 

ing a solut ion of these equations. These include a quadratic approximation for the 

free energy as well as a "sel f -consistent"  perturbation theory. In sections IV and 

V we discuss the re la t ionship between the two theories in more de ta i l .  Namely, we 

show that to lowest order in ~ t h e  renormalization group equations for  several models 

of c r i t i c a l  dynamics can be obtained from the corresponding mode coupling equations 

by a simple transformation I 0 ' I I .  Thus to order ~, the two theories agree exactly. 

In section VI we discuss one example, the simple f l u i d  (or binary f l u id )  to second 

order in ~ ,  in order to compare the or ig ina l  very successful mode coupling calcula- 

t ion for  this system with the exact second order resul t .  F ina l l y ,  in section VII we 

b r i e f l y  discuss the t r i c r i t i c a l  dynamics of He 3 - He 4 where the renormalization group 
13 work led to improved model equations of motion over those of the e a r l i e r  mode cou- 

pl ing theories 14'15 



I I .  Semiphenomenological Nonlinear Langevin ' Equations 

One of the s ign i f i can t  accomplishments in the development of the theory of c r i -  

t i ca l  dynamics has been the der ivat ion from the exact microscopic equations of non- 

l inear  Langevin or, equivalent ly ,  Fokker-Planck equations of motion. The pioneer 

work in this f i e l d  is that of Kawasaki, who re l ied  heavi ly on the projection opera- 

tor  formalism developed by Mori 16 and by Zwanzig 17. This projection operator forma- 

l ism was in turn motivated by the work of Green 18, who showed that the probabi l i ty  

d is t r ibu t ion  function for  hydrodynamic variables sa t is f ies  a Fokker-Planck equation. 

These nonlinear equations of motion are the fundamental s tar t ing point of both the 

mode coupling and renormalization group theories. This is in fact  one reason for  

the close re lat ionship between these two theories. However, i t  is  to be noted that 

these equations are not exact but involve three basic approximations which seem phy- 

s i ca l l y  plausible and which we discuss below. These equations are hence cal led semi- 

phenomenological; one j u s t i f i c a t i o n  for  the i r  v a l i d i t y  l i es  a poster ior i  in compari- 

son between the resul tant  theory and experiment. Further work in th is f i e l d  w i l l  

cer ta in ly  involve refinement of these equations of motion. 

Two par t i cu la r l y  simple derivat ions of these nonlinear Langevin equations have 

been given, one by Mori and Fujisaka 19 and another by Kawasaki 20. Other discussions 

of these equations or the corresponding Fokker-Planck equations also ex is t  in the 

l i t e r a t u r e  4, 21-23 A very nice summary of these equations as well as a useful d is-  

cussion of some of the i r  general properties is given by Ma and Mazenko 24. In th is 

section we shall present a short version of Kawasaki's derivat ion which quite natura- 

l l y  involves the introduction of the Zwanzig projection operator. The f i r s t  point 

to note here is that in general we are not interested in the complete, highly com- 

pl icated microscopic time evolution of a system. Rather, we are usually interested 

in time scales character is t ic  of i t s  slowly varying dynamical quant i t ies,  such as 

those associated with hydrodynamic modes. Therefore Zwanzig and independently Mori 

introduced a projection operator formalism which would extract from the microscopic 

dynamics the equations of motion appropriate for  these slowly changing quant i t ies,  

the so-called gross var iables,  which we denote by {AI,  . . . ,An }  or ~A~. The correct 

choice of these variables is crucial  to obtaining useful equations of motion. Near 

a c r i t i c a l  point the set would include the order parameter, even i f  i t  were not a 

conserved quant i ty,  due to i t s  anomalous relaxat ion time. To derive the nonlinear 

equations appropriate near a c r i t i c a l  point, we f i r s t  introduce a projection opera- 

tor  P, such that for  a dynamical var iable X( t ) ,  

(21) Px( ) = Z ( x  , ({a})) ([A}), 
# 

where (A,B) denotes an appropriate inner product of two a rb i t ra ry  dynamical var iables. 

For s imp l i c i t y  we only consider the classical  mechanics case where ~ ( ~ A } ) :  (~) ([A}). 
The choice of ~(~) ({A})} then determines the projection operator. The separation 



of X(t) into i t s  "slowly" varying and "more rap id ly"  varying parts is then given by 

X = PX +QX, where ( ~ : I  - P and O.X represents the rapid ly  varying part of X. 

In order to discuss the par t i cu la r  problem posed by c r i t i c a l  dynamics wi th in 

the context of th is  projection operator formalism, we next introduce the operator 

i den t i t y  of Kawasaki, 

a ~ ~ .  (, ~(~-s):~ ~ (='- ~o) 
: ~ ~ ~o + ~ ~ ~ ~o e ~ (~'-yo) (2.2) 

0 

+ e z (~ -~ *o ) .  

for  an a rb i t ra ry  o p e r a t o r ~ o ,  where the time development of a dynamical var iable 

X(t) is given by the L iouv i l l e  operator as 

X~(~): e X .  (2.3) 

Here X denotes the i n i t i a l  value of X(t) at t = O. In order to obtain a generalized 

Langevin equation for  the gross variables we next choose ~ = P ~  and apply (2.2) 
O 

to A ~ t ) .  This y ie lds the formally exact equations 
L 

where 

(2.5) ) 

~ : (~ ~ ~Z @i(fAlJ. (2.6) 

The f i rs t  term in (2.4) is the "adiabatic" term; the second expresses the damping of 

this adiabatic motion by the frictional effects arising from the "random" forces 

f i ( t )  which satisfy the orthogonality conditions 

(f~ (~)' ~ i  ) = o, (2.7) 

( ~ , f ,  ) = o. (2.8) 

This f r i c t i o n  term in general involves memory e f fec ts ,  which brings us to the core 

of the problem of c r i t i c a l  dynamics. Namely, so far  what we have done is formal ly 

exact for  any projection operator in c lassical  mechanics which sa t i s f ies  (2.1).  The 

issue, however, is what constitutes a useful projection operator for  c r i t i c a l  dyna- 

mics? An answer can be given, i f  we decide that i t  would be nice to be able to es- 



sentially ignore memory effects, i.e. to make a Markovian approximation for the ker- 

nel ( f i (s ) ,  f j ) .  This is tantamount to the assertion that the { f~( t ) }  are really 

random. Once we decide that this is a sensible goal, we can immediately see why cr i-  

tical dynamics differs from the usual hydrodynamics which we are accustomed to handle. 

For example, at f i r s t  sight a natural choice to make for the (~).. is to choose 
- i # ' i  i i  

il-(~"fflei})--~E A i  ~ . I f  we then choose the gross variables to be orthogonal to 

each other and define the inner product to be the Kubo canonical corre la t ion 20 ( turn- 

ing, momentarily to the quantum mechanical case) we obtain from (2.4) the general i -  

zed l inear  Langevin equation o r i g ina l l y  derived by Mori: 

,=l.t . i t 1 " 
t i 

The problem with th is  choice near a c r i t i c a l  point ,  however, is that the f f ~ ( t ) }  

are not " rea l l y  random". In th is case the forces [ fJ  are orthogonal only to l inear  

functions of the gross variables, via (2.7) and (2.8).  Thus these forces then con- 
ta in products of the gross variables and hence are not random 4'5 '20'22.  Correspon- 

d ing ly , ther~ is  a memory e f fec t  and one cannot therefore make a Markovian approxima- 

t ion,  i . e .  ( f~(s) ,  f j )  = ~ ~ ~(s) .  

Therefore, i f  we wish to f ind an approximately Markovian theory, we must choose 

a d i f f e ren t  project ion operator. This rather natura l ly  leads to nonlinear in terac-  

t ions between the slow modes, as we now see. Following Kawasaki we thus go to the 

opposite extreme from the above choice of the Mori project ion operator and introduce 

the Zwanzig project ion operator,_i.e.ll we choose the set ~ }  to include a l l  the 

sui tably symmetrized polynomials of { A J .  We also choose the inner product (A,B) 

to be the equi l ibr ium average <A B ~ (or the Kubo canonical corre lat ion in quantum 

mechanics) and introduce the completeness condit ion 

where A = A(~), A' = A(x ' )  and ~ denotes the representat ive point of the system in 

phase space. The equi l ibr ium probabi l i ty  d is t r ibu t ion  function for  the gross var i -  

ables is Pe({A}), while ~(A - A') denotes the product of the delta functions 

~(Ac- A~). Then from (2.4) we obtain 

o ' • (2.111 

where the streaming term is given by 



The random forces are given by 

~,:({,') = e (P, C ~ A~- (2.13) 

and the kernel 

where 

< x  ; 5 = < x  Cm-a) b. (215) 

Thus by choosing the Zwanzig projection operator we are led to nonlinear equations 

of motion. The nonlinear coupling between the slow modes ~A(t)} arises from two 

sources, the reversible mode-coupling term Ur~({A}) and the i r revers ib le term ar is-  

ing from the equilibrium probabil i ty function through the kernel Kg  4. On the other 

hand, what we have gained at the expense of these nonlinear couplings is a represen- 

tation, in which the forces { f ( t ) }  should be random. This would result from the or- 

thogonality of the { f ( t ) }  with the ~(~4(~A})} , provided that the set A contains 

all of the slowly varying dynamical vaFiables of the system. Thus a proper choice 

of the gross variables is crucial to a successful theory of crit ical dynamics. 

To obtain the usual phenomenological equations of motion from the exact genera- 

lized Langevin equations (2.11) we need to make three basic, plausible assumptions. 

The f i rs t  is the Markovian approximation, which was the original motivation for choos- 

ing the Zwanzig projection operator. Namely, 

O It II where the L(~({a}) are the bare kinetic coefficients. The nonlinear couplings 
¢ 

renormalize these bare coefficients and lead to the physical transport coefficients 

L~  which are the object of experimental and theoretical interest. The second ap- 

proximation is to assume that these bare coefficients are independent of the gross 

variables, i.e. 

L? (2.17) 

The final assumption is that the noise is Gaussian distributed. These assumptions 

then approximate (2.11) by the phenomenological equations of motion 
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where 

F ( f A } )  - - ( f A } )  (219) 

These equations are the s tar t ing point for  both the mode coupling and renormalization 

group theories. 

Next, we note that the "mode coupling" or "streaming" terms ~(~A})  can be given 

e x p l i c i t l y  in terms of certain Poisson brackets or commutators of the gross variables 

{A~.  These terms can be wr i t ten in general in the form5, 24 

(2.20) 

where ~ is a constant and ~(6 = - ~ c #  are variables obtained from the Poisson 
E 

brackets or commutators of AE. Since these depend on the system of in te res t ,  the 

Poisson brackets are one set of quant i t ies which determine the un iversa l i ty  classes 

in c r i t i c a l  dynamics. In general the ~(~A}) involve nonlinear interact ions between 

the slow modes of the system (hence the name "mode coupling") and were shown by Ka- 

wasaki 4'5 and by Kadanoff and Swift 25'26 to give r ise to anomalies in transport co- 

e f f i c i en ts  near the c r i t i c a l  point. We should also note that in many mode coupling 

calculat ions a s impl i f ied version of the above model equations is used. Namely, in 

~ ( { A } )  one retains only the l inear  and quadratic terms in the gross variables 5, i .e .  

The ~1. and ~/'~(~ const i tute character is t ic  frequencies and mode coupling coe f f i c ie -  

nts , respect ively.  We do not give e x p l i c i t  expressions for  them here but they in- 

volve in general the Poisson brackets and suscep t ib i l i t i es  for  the gross variables. 

F inal ly ,  we end this section with a re la t i ve ly  simple example of these nonlinear 

Langevin equations, namely the isot ropic  Heisenberg ferromagnet 4'24. In this case 

appropriate gross variables are the set of Fourier components [ ~ , }  of the the 

magnetization dens i t y~ (~ , t )  with h < A ,  where ~A~ is the upper cu t -o f f  wave number. 

The Ginzburg-Landau free energy in zero magnetic f i e l d  is 

where • is a three-component  vec to r  f i e l d  and r o = a(T-Tc) .  The "mode coupl ing"  

term fol lows from the standard spin commutation relat ions which leads to 

3 
{~I~ h' ~ = ~ (~ ~ r  (2.23) 

' ~ =  I , ~ ( I Y  I I .  IL' " 

Thus one finds 
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I f  we write the bare kinetic coef f ic ient  for the conserved order parameter as 

~ ( ~  =~2 rand use the Ginzburg-Landau free energy (2.22), our nonlinear Langevin 

equations (2.19) can be written as 

where the local magnetic f ie ld  is 

V : -- ~ F / ~  ~'~ (2.26) 

The Gaussian noise term sat isf ies 

< ¢~w(~) f~. , (~ , )  > - : r ~  " ~# ~_~,~, ~(~_~,) (2.27) 

In this language, the conventional theory consists of three approximations: f i r s t ,  

the Onsager coef f ic ient  F ~ remains f i n i t e  at the c r i t i ca l  point. Second, the mode 

coupling term is ignored ( "A= 0). Third, a quadratic approximation is made for the 

free energy functional, such that in Fourier space 

- - - a ~ / ~ ,  = ~.-~ "~ 
- k 

- I  
where ~hTO is the thermodynamic suscept ib i l i ty .  In the mode-coupling theory 

only the la t te r  approximation is made. Finally, in the renormalization group analy- 

sis the fu l l  Ginzburg-Landau free energy functional is used. The presence of the 

quartic term ~o(~2)  2 -  then leads to additional nonlinear coupling in the Langevin 

equations beyond that included in the mode coupling theory 24. 
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I I I .  Mode Couplin 9 Theory 

In th is  section we summarize b r i e f l y  the sel f -consistent  mode coupling theory as 

developed by Kawasaki 4. Other approximate calculat ional  schemes s im i la r  to th is have 

been developed, but we w i l l  not discuss them here 25-28. The basic s tar t ing point in 

the mode coupling theory is the set of phenomenological equations given in (2.18). 

These, however, are extremely d i f f i c u l t  to solve, due to the i r  nonl inear i ty  which 

arises both from the revers ib le,  streaming term O'~a~) as well as from the i r rever -  

s ib le term through the free energy F ~ .  Furthermore, i t  is worth noting that at 

the time the theorists were attempting to solve these equations, the E-expansion did 

not ex is t .  One was faced, therefore, with the addit ional d i f f i c u l t y  that there is no 

smallness parameter in three dimensions in these nonlinear Langevin equations. The 

approach which was developed, pr imar i ly  by Kawasaki, consisted of two parts. The 

f i r s t  was to consider the local free energy F ( { ~  in these equations as known, in 

the same s p i r i t  as conventional theory. He then made the Gaussian approximation 

where aj stands for  the gross variable whose corresponding phase function is A~(x). 

We also choose variables such that ~ 6  ~ = O f o r  ~ 4 .  I t  is important to note 
i 

two points here. The f i r s t  is that th is  Gaussian approximation involves the correct 

equi l ibr ium suscep t ib i l i t y  ~ =  ~ I o a l ' >  rather than a "bare" suscep t ib i l i t y  such as 
- I  # 

r o which occurs for example in the or ig inal  Ginzburg-Landau Hamiltonian (2.22). 

Thus in a sense this approximation includes some of the effects of the quart ic term 

which occurs in the Ginzburg-Landau Hamiltonian. However, as we w i l l  see l a te r  i t  

does not adequately describe a l l  of the effects of u o. The second point is that due 

to th is  approximation a l l  of the nonl inear i ty  in the Langevin equations arises from 

the revers ib le streaming term I f ~ .  The renormalization group approach, on the 

other hand, does not make a Gaussian approximation but rather begins with the f u l l  

Ginzburg-Landau Hamiltonian with bare coupling constants. In par t icu lar  this means 

that there is an addit ional source of nonl inear i ty  in these equations which ar ises, 

for  example, from the quart ic term which involves the coupling constant u o. I t  should 

also be noted that in many of the mode coupling calculat ions the Ornstein-Zernike 
A(k 2 +~2)-I approximation was used for  the order parameter suscep t i b i l i t y ,  i .e .  ~ =  

where~C is the inverse corre lat ion length and k is the wave number. This approxi- 

mation was made only for  calculat ional  convenience. 

The second part of the mode coupling calculat ion involves a perturbation solu- 

t ion of the mode coupling equations. To discuss th is i t  is convenient to convert 

our Langevin equations into equations for  the propagators 

I ~ o  
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where we use the notation that ~ now stands for both the wave number as well as the 

label for the type of gross variable being considered. The superscript # denotes 

Hermitian conjugate. I t  is straightforward to show 4 that from (2.19) we obtain a Dy- 

son equation 

where ~ ( t )  is the proper self-energy and ~ : ( t )  is the bare propagator which 
@ 

can be obtained from the Langevin equation by dropping all of the nonlinear terms. 

To solve the Dyson equation Kawasaki developed a perturbation expansion in powers of 

the nonlinear terms which arise from ~(~a}). Since there is no smallness parame- 

ter in this expansion i t  is not obvious a priori as to whether this is a useful pro- 

cedure. The simplest nontrivial approximation in this scheme is to ignore all "ver- 

tex" renormalizations which leads to the following set of coupled equations 4 for the 

Fourier transform of G#(t): 

G'. = c y _ 7 - l  <3.4) -# 

where the self energy is given by 

The b~ are the characteristic frequencies and the ~#'gt ~ are the mode coupling co- 

efficients'~ which arise from the explicit evaluation ~of the streaming term ~(a) 4'5 

as in equation (2.21). The ~X are proportional to the bare kinetic coefficients 
L.~. -I ~° L • o , where we restrict ourselves to models in which L~ = ~(0 • 

These equations are the "self-consistent" mode coupling equations originally de- 

rived and successfully applied to a variety of models of cr i t ical dynamics by Kawa- 

saki. The most notable success of this theory is for the cr i t ical  point of simple 

fluids and binary fluid mixtures. We wil l  return to this particular example in more 

detail in section V. We now turn to the question of the relationship between this 

self-consistent mode coupling theory and the more recent renormalization group analy- 

ses. 

IV. Solution of the Mode Coupling Equations to Lowest Order in G 

In order to discuss the relationship of the two theories we f i r s t  continue our 

discussion of the nonlinear integral equations which we obtained in the preceding 

section in the self-consistent mode coupling scheme. Due to the complexity of these 

equations not much progress has been made so far ~in solving them in three dimensions. 

However, in l ight of the renormalization group work i t  is natural to analyze these 
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equations for  ~ < ( I  where d = d c - G  ( fo r  d>d c we know that  the mode coupling term 

can be ignored in the Langevin equation and that  conventional theory is va l i d ) .  To 

do th is  we make the Markoffian approximation 

G#(e) - ( 4 1 )  

where 

and 

P - p ( u = o )  (4.3) 

This y ie lds  from (3.4) ,  (3.5) and (4.1) 

(4.4) 

as our set of  coupled equations, where we have dropped neg l ig ib le  terms invo lv ing 

~ and ~ .  Next, we note that  fo r  small ~ wave numbers much greater than q give 

the dominant cont r ibu t ion  to the second term of (4.4) where q is the wave number as- 

sociated with the mode ~ . We therefore take the ~e--~O l i m i t  of the summand and 

introduce a lower cu t - o f f  in the wave number sum which is proport ional to q. The 

a rb i t r a r y  p ropor t i ona l i t y  constant in th is  cu to f f  can be shown to be i r re levan t  fo r  

small E . Next, we change the sum in to  an integral  over wavenumber and perform the 

angular in tegral  to lowest order in ~ .  F ina l l y ,  we then take ~ . ~  / ~ j .  which con- 

verts the integral  equations in to  simple par t ia l  d i f f e r e n t i a l  equations which are 

then eas i ly  solved to give ~ . .  
V 

To i l l u s t r a t e  these general remarks, we consider the pa r t i cu la r  example of the 

model,equations fo r  the iso t rop ic  ferromagnetic Heisenberg system discussed in sec- 

t ion  I I .  For s imp l i c i t y  we consider only the zero magnetic f i e l d ,  T = T c s i tua t ion  

for  which there is only one independent cor re la t ion funct ion which we choose as 

~'~,(~)= ~,~(~)~(0)>/~ ) PC.t O" Then (4.4)becomes 
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where A : 2 - ( d - l ) ~ - d / ~ f P g '  (d/2);  

rC Vl Since d c : 
Therefore our approximations discussed above resu l t  in the equation 

where 

t i a l  d i f f e ren t i a l  equation 

If" is the volume of a uni t  ce l l  and o 
have ~ C k ~ o l ~  $ -  at T = T c for  ~ < ~  I .  we 

(4.6) 

L o : L ( - /~ )  and ~ = ~ o / / q 2 ~  ~. Next, we obtain from (4.6) the par- 

~L 

Thus the renormalized k inet ic  coef f i c ien t  is 

• "  | (4.7) 

(4.8) 

where ~ I  is an upper l i m i t  of integrat ion such that v#I~ < ~I~, << "j'" Therefore we 

f ind 

(4.9) 

which y ie lds ~ : 4 - ½(  - d+2 for  the dynamical c r i t i c a l  exponent, in agreement 2 
with the renormalization group resul ts.  Simi lar  calculat ions can be done for  the mode 

coupling equations for  other models such as the planar ferromagnet, superf lu id He 4, 

and the binary f l u i d  to give results which agree with renormalization group calcula- 

t ions I0. In each case the mode coupling integral  equations can be reduced to par t ia l  

d i f f e ren t i a l  equations for  E<< I .  

With these preliminary remarks to indicate how an ~ -expansion calculation can 

be carried out in the mode-coupling scheme, we now consider the relationship between 

the two theories to lowest order in 

V. Relationshi P Between the Mode Couplin 9 and Renormalization Group Theories 

In order to compare the two theories i t  is convenient to summarize the renormali- 

zation group approach in the context of Fokker-Planck model equations which corres- 

pond to the nonlinear Langevin equations introduced ea r l i e r .  These take the form 5 ' I I  

(5.1) 
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where (~(~a}, t) is the probability distribution function for the set of gross vari- 

ables ~ai(~) } with wave number "~ . The stochastic operator ~ is 

where we have explicitly displayed the ~ dependence. We have also written the ki- 
netic coefficient L;~. ( ~ )  as ~P(~ L ( ~  , where p(}. is two or zero depen- 

ding on whether or not-the variables ~((E) and ~(k~ are conserved. As is well 

known, the renormalization group as applied to dynamics consists of two operations. 

The f i rs t  consists of integrating out those Fourier components ~((~) in (5.1) with 
& - ~ ( ~  • ~ , where ~ is the upper cutoff in the wave number sums and b • l .  

The second is the set of scale transformations 

(5.3) 

where XL" = (:L-v~)/2 when a i is the order parameter. These two operations yield a 

renormalization group transformation on the set of scaled variables which paramet- 
rize ~ . To obtain the relationship between these scaled variables and the physical 

transport coefficients, we f i rs t  note that the renormalization group transformation 
relates the original stochastic operator ~ l  and the new stochastic operator ~ 2  

through the equation 

> (5 .4 )  

v/¢,  ' %!)> 
where ~ is the exponent which character izel the transformation of the streaming term, 

i .e .  

where the superscripts l and 2 denote the functions before and a f te r  the el iminat ion 

of the short wave length f luctuat ions,  respect ively.  I t  is to be noted that the form 

given in (5.4) is correct to f i r s t  order in ~ . In higher order memory ef fects would 

have to be included. 

Upon i te ra t ing  the renormalization transformation • times we can wr i te 

-~ -~ ~= (5.61 ~=~ "~ _~-~( 
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and 

= C l  

I f  we denote by ,, -~ " I the  set of coupling constants- -~L(x} , the mode coupling coef- 
f ic ients  ~ and the thermodynamic variables, then Formally we can write the re- 
normalization group equations as 

~I.A(+ I = e ~  ~ i  (5.7) 

where R b represents the renormalization group operations given above. For the pur- 
pose of comparing this with the mode coupling theory, i t  is useful to give a d i f fe r -  
ential formulation of (5.7). Let ~ =~o~ R for some constant ~oand choose (b- l )  
to be in f in i tes imal .  Also, define scaled variables L . (k )  =L( and ~ ( k )  = 

so that f ~ L l  --) F~  ( k ) ] .  Then (5.7) becomes ~ ~ ,  ~ I  

(5.8) 

where • = - ~  and G is the inf in i tes imal  generator of the renormalization group 
transformation. 

We are now in a position to compare the two theories, at least to order ~ . 

First recall that the mode coupling approach yields equations for the physical trans- 

port coefficients /_~;(k)~ and the mode coupling coefficients "A~ , for small values 

of the wave number k. ~The nonlinear coupled equations (3.4) and (3.5) or the simpli- 

fied partial d i f ferent ia l  equations such as (4.7) express the effect of long-wave- 

length (k-)O) fluctuations on the transport properties of the system. On the other 

hand,z, _ _the renormalization group yields equations for the scaled variables L(~'(k) 

and ~ { ( k ) ,  in the l im i t  k-~o, where k again describes the effects of long wave- 

length f luctuations, as X -~p~ .  I t  is to be noted that the reason one deals with 

scaled variables in the renormalization group approach is due to the desire to find 

a scale invariant theory i . e . ,  a fixed point solution of the group equations. Mode 

coupling, on the other hand, is not formulated to yield a scale invariant theory. The 

two approaches could be formally related, then, i f  one could l ink the scaled vari- 

ables to the physical variables by suitable transformations which effect ively "un- 

scale" the scaled coefficients and which at the same time take into account the d i f fe r -  

ent l imi t ing values of k which are involved in the two cases. Thus we write 

and 

(5.9) 

,,, @ -W,I 
(5.IO) 
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where 

(5.11) 

The coefficient ~ # "  is just the conventional dynamical crit ical exponent while ~, 

is the scaling exponent for the mode-coupling term involving ~ .  The various con- 

stants in (5. 9) and (5.10) arise from the arbitrariness in choosing a scale for k 

and to the invariance of the renormalization group equations to multiplication of the 

scaled coefficients by arbitrary constants. I t  is also important to note that the 

different k-dependencies of -#L~" and ~¢4# in (5.9) arises from the fact that LZ~.(k) 

corresponds to iterating the renormalization equations ~.~(~/A~)/~.w~ times, whereas 

~ . ( k )  contains the contribution of fluctuations whose wave numbers are 9reater 

than k. To obtain differential equations for the physical transport coefficients one 

substitutes (5.9) and (5.10) into the renormalization group equations (5.8). Expli- 

c i t  calculation for several models shows that these differential equations are exactly 

the same as obtained from the mode coupling equations (3.4) and (3.5), to f i r s t  order 

in ~ . 

As a simple example of these ideas we return to the isotropic Heisenberg model 

discussed ear l ier .  The renormalization group equations for this model were f i r s t  ob- 

tained by Ma and Mazenko 24 and can be written as ( w i t h A  = I) 

" ~ t  : 6 ~ (5.12) 

L/.4_ I = E~ L X 4- • (5.13) 

where ) C ~ , ~  ~ at c r i t i ca l i t y .  The differential form of these equations is 

(5.14) 

I q 2  n ~ L. ( ~ )  
(5.15) 

Introducing (5.9) and (5.10) into (5.14) and (5.15) yields 

192 rr k L (k )  
(5.16) 
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¢,w 
which is the mode coupling equation (4.7) wi th "Ao= I .  The scaled ~ ( k )  is j us t  

given by A ~ - ~ ÷ e l ~  ~o. Simi lar  resul ts  can be obtained for  the other models men- 

t ioned ea r l i e r .  

F ina l l y ,  we note that  i t  is not rea l l y  surpr is ing that  there is such a close re- 

la t ionsh ip  between the mode coupling and renormalizat ion group theor ies.  In both 

cases one attempts to e l iminate the short wavelength f luc tua t ions  in the dynamical 

equations of  motion. In the or ig ina l  mode coupling theory, one does th is  in one step, 

whereas in the renormalizat ion group approach one integrates out these f luc tua t ions  

in small steps. To f i r s t  order in ~ , the only d i f ference in these theories is that  

one seeks a scale invar ian t  theory whereas the other does not. In pa r t i cu la r ,  th is  

means that  the Gaussian approximation and the neglect of  vertex renormalizat ion is 

va l id  to f i r s t  order in ~ .  In higher order in ~ , however, th is  ceases to be true. 

VI. C r i t i ca l  DTnamics of a Simple Fluid 

Since the se l f -cons is ten t  mode coupling theory is  based in part  on an approxima- 

te perturbat ion theory in which "vertex correct ions" are ignored, i t  is worth con- 

s ider ing an example in which the nature of th is  approximation becomes c lear.  For th is  

reason we consider a model for  the c r i t i c a l  dynamics of  a simple f l u i d  in which a re- 

normalizat ion group analysis to second order in ~ by Siggia et. a l .  12 c l a r i f i e s  the 

nature of  the se l f -cons is ten t  scheme. Since the mode coupling theory has been suc- 

cessful in expla in ing the experimental s i tua t ion  fo r  f l u i d s ,  i t  seems a p a r t i c u l a r l y  

good system to review here. 

The phenomenological equations of section I I  as applied to the f l u i d  are given 

by 

.-au/a_..¢ - "~°9~ SF/~u/ - ~o 9~' • S ' F / ~  + ~- (6.1) 

3 • 

where the Ginzburg-Landau l i ke  Hamiltonian is 

and the noise terms ~ and ~ are Gaussian d is t r ibu ted  and sa t i s fy  

<~¢~,~) e¢~'~')> .~ _ ~ ~o ~ "  $ (x-:~' ) ~(~-Y~' ) (6.4) 

(6.5) 
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This is model H f i r s t  introduced by Halperin et. a l .  12'29 The order parameter 

is a l inear  combination of the energy and mass densit ies and "~ is the transverse mo- 

mentum density for  a d-dimensional incompressible f l u i d .  The operator T picks out 

the transverse part of the vector in brackets ( ' I ~  f ~ : ~  _ ~.~.~/F~ "~ ). The coe f f i -  

cients ~ a n d  ~o are the "bare" thermal conduct iv i ty and shear v iscos i ty ,  respective- 

l y ,  while the mode coupling coef f i c ien t  ~ is introduced for calculat ional  conveni- 

ence. A good discussion of the relevance of th is model to the dynamics of a real 

f l u i d  is given by Siggia et ai.12. This model contains both d iss ipat ive and rever- 

s ib le  in teract ions,  through the coupling constants u ° and go respect ively.  There is 

a dimensionless bare coupling constant f o 

~-q (6.6) 

where ~ ( ~ : ( : ~ ) - ~ a / ~ / r ( ~ ) a n d  ~ is the u l t ra  v i o l e t  cutof f .  The ~ expansion 
I 

shows that fo is a relevant var iable for  d<d c = 4, with i t s  f ixed point value being 

of order ~ . 

We f i r s t  summarize the mode coupling theory for  th is  system which is based on a 

f i r s t  order expansion of (6.1) - (6.2) in powers of go" Although th is is an uncon- 

t ro l l ed  expansion, since there is no smallness parameter in three dimensions, th is 

sel f -consistent  calculat ion y ie lds resul ts in quite good agreement with experiment. 

The coupled equations are given by 

' ( ~ . )  

Although no one has solved these equations exactly to date, a number of approximate 

solutions have been given and used in the analysis of experimental measurements. The 

quant i t ies with which we w i l l  concern ourselves most here are the exponents "~(~ and 

.'(~ which characterize the divergences in the thermal conduct iv i ty and shear v is -  

cos i ty ,  respect ively,  i .e .  

"X(T ) ,,, ~.X~ (6.9) 

 CT) - . ( 610 )  
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In addition we w i l l  be interested in a universal amplitude ratio R, 

R : C~sT:) -~ "~CT) TI(T )~," (T) ~ d-z 

in units in which go = 1 and the free energy has units of kBT. 

be written in terms of the diffusion constant 

(6.11) 

This equation can also 

(6.12) 

as 

1) - R ~ T : / ~  l a - ~  (6.13) 

Now the exact second order calculation yields 

, ,  [, 
~ z ~  T~ ~ - o . ~ e  + o ~  ~) _- o.91~, (6.14) 

_L e F I  + 0 . 2 ~ g e  'X_ 

which satisfies the scaling relation 

In addition one obtains 

(6.15) 

(6.16) 

+oC  )7 • 16.171 

To obtain the second order results for the self-consistent mode coupling calculation 

of Kawasaki, one has to omit certain diagrams which correspond to vertex corrections 

in the exact calculation. In addition, since the original self-consistent calcula- 

tion of Kawasaki used the 0rnstein-Zernike approximation for the stat ic suscept ib i l i ty  

(for calculational convenience) one has to set ~ = 0 in the scaling relation (6.16). 

This then yields the values 

p -  

lq 
I 

(6.18) 

(6.19) 
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)] R = K~ I - -  O.OZ~ ~. "t" 0 ~ '  (6.20) 

Thus one can see that the mode coupling results which are exact in f i r s t  order are 

quite good even in 2nd order. Furthermore, the Ornstein-Zernike approximation was 

only introduced by Kawasaki to simplify calculations. One could improve the self- 

consistent scheme by using 12'29 the correct q , see also all recent work by Ohta 30. 

Finally we remark that, as is discussed in Siggia et. al.12 i t  appears that the 

reason for the excellent agreement between Kawasaki's theory and experiment lies in 

the existence of what amounts to a smallness parameter, ~ /x~ ~o .o {  in the cor- 

rections to the mode coupling calculation that arise in the renormalization group 

analysis. Although this parameter does not lead to any systematic expansion, i t  does 

appear in most of the higher-order diagrams. 

VII. Tricri t ical Dynamics of He3-He 4 Mixtures 

We conclude this paper with some brief remarks about the t r i c r i t i ca l  dynamics of 

He3-He 4 mixtures. Our purpose is only to indicate that in this particular case using 

the Ginzburg-Landau free energy functional rather than making a quadratic approxima- 

tion to i t  leads to significantly different results for the transport coefficients. 

A ful l  discussion of this subject is given by Siggia and Nelson 13. Other speakers at 

this conference wil l  no doubt have more to say about this subject. 

The phenomenological mod@ which has been studied by G-expansion techniques is 

an example of the nonlinear Langevin equations discussed in section I I .  Specifically 

these equations are 

(7.1) 

(7.2) 

(7.3) 

where 

- ,  
(7.4) 
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Using the notation of Siggia and Nelson~3the random forces satisfy the usual rela- 

tions 

ro s(,-,' ) (7.4) 

(7.5) 

06 ', -- - Lo v "  - ) 
(7.6) 

with the other force correlations being zero. The various quantities in these equa- 

tions are the following: ~ i s  the complex order parameter for the superfluid tran- 

sition. The variable ~.s is the local 3He mass concentration and ~r. is a linear 
V 

combination of the local entropy and local concentration. The quantities ~o~ ~o) 

#.~ and ~CQ denote kinetic coefficients, while the ~0~o and ~ ° o  denote mode 

coupling coefficients. 

The original mode coupling theories 14'15 were based on this model except that 

only quadratic terms in (7.1) - (7.3) were kept, with the equilibrium inverse suscep- 

t i b i l i t i e s  in place of the bare inverse susceptibilities. This is a situation, how- 

ever, in which the dissipative coupling between the order parameter ~ and ~ which 

was ignored in the original mode coupling theories turns out to be quite important. 

Indeed the f i r s t  order (~-expansion results for the model defined by (7.1) through 

(7.7) differs from those obtained in the earlier mode coupling results, precisely be- 

cause of this coupling. The point here is that this is a good example of a situation 

in which the renormalization group has led to an improved model, precisely through an 

explicit display of the dissipative nonlinear coupling term. I t  is also true, of 

course, that a mode coupling calculation of the model (7.1) - (7.7) would agree to 

order ~ with the renormalization group analysis. 

VIII. Conclusion 

I t  should be clear from the preceding discussion that the renormalization group 

has led to an improvement in the theory of cr i t ical dynamics. I t  should not be over- 

looked, however, that the earlier mode coupling theory was nevertheless quite success- 

ful. Indeed i t  seems to this author that these recent developments provide strong 

evidence for the great intuition exhibited by the theorists responsible for the for- 

mulation of mode coupling theory. 
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FIELD-THEORETIC METHOD APPLIED TO CRITICAL DYNAMICS 

H.K. JANSSEN 

I n s t i t u t  fur Theoretische Physik 
Universi t~t  DUsseldorf 

W.-Germany 

Introduction 

Since the discovery of IVilson's renorm.alization group theory of c r i t i c a l  phenomena 

based on the successive el iminat ion of short wavelength f luctuat ions also the f i e l d  

theoret ic formulation of renormalization group ideas was developed [ 1 , 2 1 t o  deal 

with c r i t i c a l  systems. The main idea of the f i e l d  theoret ic method rests on the fact 

that measuring the c r i t i c a l  f luctuat ions on a convenient (long wave length) scale 

one has to chose a scale on which the interatomic distances go to zero in the c r i t i -  

cal l i m i t .  In th is  l i m i t  the f luctuat ions of the physical variables are now given 

by f i e l ds  defined over a spat ial  continuum. Then the correlat ion functions of the 

f luctuat ions of an interact ing system entai l  u l t r a v i o l e t  divergencies which can be 

eliminated by sui table mu l t i p l i ca t i ve  and addi t ive renormalizations of the bare phy- 

sical quant i t ies.  The renormalizations introduce instead of the internal length sca- 

le (the interatomic scale which goes to zero) an external length scale sui table to 

measure the long wave length phenomena. The independence of the or ig inal  bare theory 

from th is  external length scale leads to the renormalization group which exhibi ts the 

scaling properties of the c r i t i c a l  system. 

In the area of dynamical c r i t i c a l  phenomena ( for  a review see [3~ ) f i e l d  theory was 

f i r s t  developed by De Dominicis et a l .  C4~ for  pure relaxat ional  models. As indepen- 

shown by De Dominicis ~5~ and Janssen E6~more general Markovian dently processes 

can be eas i ly  described in terms of a path integral  which involves besides the phy- 

sical variables a conjugate set of var iables.  The perturbation theory based on th is  

path integral  leads to the Mart in, Siggia, Rose theory [7~ . The path integral pro- 

ves in par t icu lar  as a convenient tool to develop the renormalized f i e l d  theory of 

c r i t i c a l  dynamics as shown by Bausch, Janssen, Wagner [8~ and l a te r  by De Dominicis, 

[91 ( for  related f i e l d  theoret ic concepts see Kawasaki, Gunton [ lo~ I .  P e l i t i  

In th is  lecture we shall develop the f i e l d  theory of dynamical c r i t i c a l  phenomena 

by considering a model system with a continuous symmetry group. In chapter I the 

path integral formulation is given. Chapter I I  shows the renormalization of the mo- 

del and leads to the c r i t i c a l  propert ies. In chapter I I I  vie calculate by a combina- 

t ion of renormalization group and renormalized perturbation theory the dynamical 

suscep t i b i l i t y  of a relaxat ional  system below T c at the coexistence curve. 
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I. Path Integral Description of Stat ist ical Dynamics 

Let us start from a set of stochastic variables ~ (~ )  : ( . . . } ~ ( ~ ) } , . .  ) 

underlying equations of motion 

and 

d~ 

%(~)denotes a set of random forces assumed to be Gaussian distributed with white 

noise and probability density in the time interval T l !  t ~ T2: 

The deterministic velocit ies W(~) can be written in the form (see for instance 
Kawasaki ~11] and the l i terature cited there) 

(i.3) 

, - i . 

(1.4) 

The matrix M defines the (reversible) mode coupling and the matrix L (for simpli- 

c i ty  we take i t  to be independent o f ~ )  the(irreversible) damping related to the 
fluctuations of the random forces ~(1,2)  by the Nyqui sttheorem (2. f l  uctuation-dis- 
sipation theorem). In (l.3)~Igdenotes the "Hamiltonian" given by the equilibrium 
distr ibut ion: 

Remark: the formulation (1.1-5) of course includes the classical microscopic equa- 
tions of motion as the l imi t  L --~0 with a suitably chosen ~7 . . The random forces 

~thermalize the motion of the system and lead ultimately to the thermal equi l ibr i -  
um distribution exp ( - ( ~ ' r ~  " I -  N ) 
Our aim is to calculate correlation functions from (LI). Instead of solving (I . l )  
for1~(t) in terms of the random force ~ and averaging then over ~ with the weight 
(I.2) we proceed by eliminating ~ in favour of '~ .  This can be achieved (see Gra- 
ham [12~ ) by introduction of a path probabil ity density Iwl~'((~for the stochastic 
variables ~ via 
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(1.6) 

To obtain ~ f ($~  ) in a convenient form we f i rs t  introduce a set of new variables 
~ v  

(t) by a functional Fourier transformation 

As shown by Graham the Jacobian of the transformation from ~ to ~ via the equation 
of motion (I.1) is 

T~ 

hence 

(1.8) 

(I.9) 

with the action integral 

-t, 

and the Lagrangian 

(I. lo) 

~ ~ ~ (I.11) 

This form of the path integral was given independently by De DominicisC51 and Janssen 

[61 in order to treat critical dynamics. For more details see Bausch, Janssen, Wag- 
ner[81 and De Dominicis, Peliti [9~ . We may now calculate correlation functions by 

a path integral ( ' I "  4 ~ t ~  t, "r~. ) 

-_ ~ .  I ~ t~ ,~  ~ t~o... ~ tt,~ ~ r  (-~({~,~1) ~ . ~ ,  
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where we defined ~ =: ~ .~  and used the ergodic i ty  of the stochastic process. The 

corre lat ion functions can be obtained as well from an addi t ive external term - F(t).~ 

in the Lagrangian ( I . i i )  by taking successive der ivat ives with respect to F. We 

add external time dependent forces F ( t )  to the determinist ic  ve loc i t ies  V ( ~ ) .  

Then a second addit ional term - F ( t ) .  arises in the Lagrangian ( I . I I ) .  Expanding 

the correlat ions (1.12) with respect to such an external force ~ we generate re- 

sponse funct ions: 

= ~ .  i~{i~ ,~ ~ ~ (~...~ ~.~. ~ (~... ~ (~w~. ~l~ (." ~({~. ~)) (1.13) 

This is why we call the var iables~ response f ie lds .  The generating functional for 

the cumulants of a l l  corre lat ion and response functions is now given by the logarithm 

of a path integral 

<~(~)...~ t~J ~ ~ . . .~  (t~> 
#"" ~/({F, ~}) 

(I.15) 
F,~, 0 

We may calculate the cumulants as the connected parts in a diagramatical perturbat ion 

expansion in terms of the non-l inear couplings in ~ . V  ( ~ ) .  The Gaussian form of the 

unperturbed weight exp (-~o) (~o arises from l inear  terms in V ( ~ ) )  leads immediat- 

ly  to the Wick theorem. Thus the elements of the diagrams are (besides the usual nu- 

merical factors) contractions ( l ines)  or propagators: 

,~ # o ~t+~-~t~-')~,. : ~..c~-r) -[0(H')G.tH') ÷ BC,'-÷)G.~'-ul<~)o 
and vert ices:  

: coe f f i c ien t  of  ~ ( t )  . ~ ( t )  ~" in ~ ( t ) ' y ~ , v , , ( , ¢ ,  ~ ( ~  ( t ) )  

The role of the Jacobian is to compensate selfloops of the response propagators 
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~ o ' ~  - ~ , - ~  

- ~ ~ 

Thus the Jacobian can be set to one by defining ~(0)  = 0 which excludes self loops. 

Causality is then easily demonstrated (see [81 ) 

= o 
(1.16) 

i f  o n e ~  > all ~ 

This perturbation theory now generated by the path integral is the same as the Mar- 

tin-Siggia-Rose perturbation theory [7~ . 

The path integral has another important property: symmetry against time inversion 
(detailed balance). Assume that we have chosen the variables 1~ ~ to 

have definite time parit ies ~i  = ± 1. We now define a time inversion transforma- 
t i o n S :  

(1.17) 

(1.18) 

Assuming that the matrix ~ i n  (1.3) obeys Onsager-Casimir reciprocity relations (which 
follow from microreversibi l i ty) 

(1.19) 

and the invariance of the Hamiltonian 

~ C~) ~ ~ C.~.~.) = ~ C,,~ ) (~.2o~ 

One can easily prove from (1.3, 4, lo, 11, 17-2o) ~I( t = :~ (~ l ( t )  ) 

which expresses time inversion symmetry. From (1.12) we conclude that inside the cor- 
relation and response functions we can set 
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T ~  = ~ (i.22) 

Once causa l i ty  is  es tabl ished a general r e l a t ion  is e a s i l y  obtained. From (I .16,17,  

18,22) we have ( ~  : ~(01 ) 

a~E 

(1.23) 

: -E ;e~  O[÷)<~:( -oq> - 0 
and we find 

(1.24) 

This relation can immediatly be generalized by taking instead o f ~ ( t )  an arbitrary 

functional o f~ ( t )  and ~ ( t )  with only positive time arguments. 
A further relation follows from: 

(1.25) 

which is easily shown from (1.13) by partial functional integration. With ( I .  3,1o, 
I I )  using the generalized form of (1.24) we get from (1.25) i f  t~O: 

)>  0 (1261 

The last term in this equation again cancels response propagator self loops in a dia- 

gramatical expansion. Excluding such self loops we therefore can omit this compensa- 
ting term and obtain the correlation response theorem 

Again this relation can be generalized in the way mentioned below (1.24). Whereas the 

r ight hand side of (1.24) is the linear response to an external force added l inearly 

to the equation of motion ( I . I ) ,  the right hand side of (1.27) is the linear response 
to an external force coupled l inearly to~ in  the Hamiltonian, e~-~D~- H (t)q~ .This 

is easily seen from the definit ion of the deterministic velocity V (1.3), the Lagran- 
gian ~, (1.11) and the action integral ( I . Io)  by calculating ~ (t) via (1.12) ta- 
king up to linear terms in H(t), I t  is easy to see that in general the various in- 
sertions of the variable 

: C l IK~ )  I1281 
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into the mean value of some quantity A 

(I.29) 

yield all (nonlinear) responses to the so called "physical" force H(t). Relations 

of the type (I.24,27) have also been derived from the Fokker-Planck equation by De- 

ker and Haake [13~. 

At the end of this chapter let us generalize the action integral to general non-mar- 
kovian processes based on classical Hamiltonian microdynamics (Janssen [14] ) Let us 

choose the microvariables ~= ( ~ } ~ ) .  The s e t , w i l l  be retained and the set ~ will 
be eliminated. The set~ is chosen such that the Hamiltonian splits into independent 

parts : 

This can always be achieved by a (nonlinear) transformation ~I= F ( ~ ) .  As remar- 

ked following below (I.5) our formulation (I. 1-5) includes microdynamics. With (I.3o) 
also the time inversion transformation (I. 17,18) holds for each s e t ~ o r ~  separately. 
I f  now the variables ~ , ~  are eliminated via 

an action integral  arises which is no longer local in time. This action integral is 

only rest r ic ted by causal i ty  and time inversion inVariance (and other symmetries pos- 

s ib l y ) .  One is therefore lead to the general form (including counter terms for  se l f  

1 oops) 

o. • ) 

B 
with time inversion behavior 
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The correlation response theorems follow as: 

0(÷)<~(÷) T~-) ~(,}~> '~(+')L(÷',°;{tr,~l)] > 

The general form (1.32) (with time inversion symmetry under the transformations (I.  
17,18) f o r ~ )  is now sufficient to yield exp ( -~  as the equilibrium distribution. 
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I I .  Renormalization and the Renormalization Group Equation 

1. The Model 

Near to the c r i t i c a l  point the long wavelength and low frequency behaviour of corre- 

la t ion  and response functions is dominated by the motion of slow variables l i ke  the 

order parameter i t s e l f  and, e.g. ,  densit ies of conserved quant i t ies.  As a model we 

shall consider systems in which only internal continuous symmetries provide us with 

such quant i t ies.  In these cases the in f in i tes ima l  generators of the symmetry are con- 

served due to the Noether theorem. To s impl i fy  our model we exclude the energy from 

the relevant slow var iables.  This is j u s t i f i e d  i f  the order parameter system is e- 

nerget ica l ly  strongly coupled to another system which works as a local heat reser- 

vo i r  (e.g. ,  a spin system coupled strongly to the l a t t i c e  phonon system).The order 

parameter i t s e l f  is  not conserved in our model. For s imp l i c i t y  we shall fur ther  as- 

sume that the order parameter transforms according to an i r reducib le representation 

of the internal symmetry group which has only one fourth order invar iant  and the d i -  

rect product of which reduces only once (and then antisymmetrical ly) to the regular 

representation of the group (remember that the group generators transform according 

to the regular representation). Without these assumptions we have to work with many 

but s imi lar  couplings and we must resort to the Clebsch-Gordan coef f ic ients of the 

A fami l i a r  example of such models are the O(n)-symmetric or the SSS-model [15~ group. 

which includes, e.g. ,  the symmetric antiferromagnet and the planar model. As in these 

models we shall assume that the group generators have negative time par i ty  and that 

the order parameter has e i ther  posi t ive or negative time par i ty .  (This is in contrast 

to the multicomponent Bose system [161 where the group generators and the real part 

of the order parameter have pos i t ive,  the imaginary part however negative time par i -  

ty .  Therefore the couplings in the multicomponent Bose system are d i f fe ren t  from the 

ones in our model). 

The relevant variables ~ ( t )  of our model are now 

I)  the order parameter f i e l d  s ( X t ~  = £~!t~) [ W . , A ~ . . . , ~  

which is nonconserved 

2) the generator field ~ 4 . ~ t ~  ) : { ~ . ~ ( ~ | ~ )  [ C , A , . . . ) ' ~ }  

which is conserved and has negative time parity. 
All these fields are taken to be real. Therefore HI is equal to the dimension for a 

real and twice the dimension for a complex representation of the symmetry group, and 

P is equal to the number of parameters of the continuous symmetry group. The infini- 

tesimal generators (real antisymmetric matrices l i = ~ l i , ~  I ,  i=1 . . . . .  P) obey the 

commutation rules [ I  i ,  I j l  = Cijklk where cij k are the structure constants of the 
group. 

The equilibrium fluctuations are governed by a Hamiltonian of Ginzburg-Landau type 
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+ 

(I I .2) 

Because of the symmetry (including time reversal) of the model other relevant coup- 

lings are not admitted. We have written the Hamiltonian in renormalized form going 

over from bare quantities to the renormalized ones by means of Z-factors (Zi=Zi(u) ) 

VL _ ~.  I I~.  
"~K = " $  "~ , ~44.~ - - . . ~  ~ ~ ( I I .3)  

~ , ~  - ~.~, ~ -C,t.~.~ , ~-~-~ 
where we have introduced an external length scale,and ~ i s  a l inear  measure of tem- 

perature ~ T - T  c . An ( i n f i n i t e )  c r i t i c a l  ~ b  (c) has not been taken into account be- 

cause in dimensional regular izat ion th is  term is formal ly set to zero. In a loop ex- 

pansion about the "free" Hamiltonian 

the one-line-irreducible diagrams (the so called vertex- or I~-functions) i f  evaluated 

by analytic continuation in dimension d exhibit poles in ~= 4-d. The Z-factors are 

determined to cancel exactly these poles and this enables us to establish the ~.-ex- 

pansion which is indispensable to avoid infrared singularities of the cri t ical theo- 

ry ~= O. Therefore the Z-factors are determined uniquely in the form 

This procedure is the so cal led minimal renormalization scheme of t 'Hoof t  and Ve l t -  

man ~ 7 ~ .  For more deta i ls  see Amit ~-2 I O r  Brezin, Le Gui l lou.  Zinn-Justin ] 
Because the f luctuat ions of m are Gaussian we f ind immediatly 

Z m : 1 (I I .6) 

Since H is dimensionless we conclude from (11.2) that the (naive) dimensions of  the 

f ie lds  are given by 

~'~" ~'I)., (I I .7) 

Let us now consider equations of motion (I.1) for the Fourier-transformed fields 

S(~.l~; ) and m(~,~.) 

~(+,+) :L~(~l.(~,l,).~(+,e~ 4 nonlinear terms (11.8) 
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~ l ~ . ~ , ~ )  : L ~ [ ~ )  " ~ , ~  ) + nonlinear terms (11.9) 

Ls( ~ ) and Lm( ~ ) are wave vector dependent~ Onsager-coefficients. An expansion of 

Lm( ) in  of ~ has to s tar t  with ~ because the conservation property of powers 
m(q,t) demands 

whereas an expansion of Ls(q) can start with a constant. Therefore we have 

I f ~  is a suitable scale for "~ or 

, 

l 

we obtain from (11.8,9,11) the scale of (inverse) time or frequencies 

(I1.11) 

(II.12) 

~ 3L L (11.13) 

where ~ i s  an appropriate damping constant of scale ~s and ~'m" We note another con- 

sequence of m-conservation. From ( I I . lo)  i t  also follows that each term on the right 

hand side of (II.9) carries at least one power of ~. Rewriting the equation of mo- 

tion in Lagrangian form (I.11) we see that each ~(~, t )  (except the term containing 

a time derivative) is decorated by at least one power of ~.  

From the time derivative term we obtain the dimension of the response fields ~(~,t) 

and m(~,t) using the dimension of s(~, t )  and m(~,t) from (11.7) and taking into ac- 

count that the a c t i o n ~ i s  dimensionless 

~ L  ~" ~ / L  ( I I .  14) 

We are now ready to reduce the general form of the action to i t s  relevant part. 

At f i r s t  le t  us consider an expansion of the memory kernel L ( t , ~ ; t ' , x ' ;  {Y,s,~,m ~ ) 
in monomials of the f ie lds.  Because of translat ional symmetry the coeff icients of 
the monomials depend only on differences of the time and space coordinates of the 

f ie lds .  Consider now the Fourier transforms of these coeff ic ients.  They should be ana- 

l y t i c  functions of frequencies and wave vectors i f  a l l  slow variables are retained 

(e.g. ,  in a system with quenched impurit ies the i r  density must be treated as a slow 

variable, averaging over the impurity d is t r ibut ion leads to nonanalyt ici t ies in the 

frequency variables, see De Dominicis C18~). Therefore we can expand in powers of 
frequencies fm~and wave vectors ~ .  Each power o f ~ o r  q2 lowers the (w,-dimension of 

the (constant) coeff ic ients of th is expansion by 2 (see I I .12,13).  Recalling that on- 
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ly  coupling coef f ic ients  with posi t ive ~.-dimension are relevant couplings and that 

each f i e l d  m(g~) is decorated with at least  one power of o~we recognize from (11.7,14) 

that  the memory reduces to a Markovian form (local in time) with relevant terms: 

(without se l f  loop counter terms) 

- ~. ~. (t- ~ ,  - cw). z~.(v(~ ~ ) )  ~i~.~ 
up to contributions which have the same structure as the term ¢ ~ . ~ ) i n  the action 

integral (I.32) 

The velocity ~((~) is determined by the antisymmetric mode coupling matrix M ( ¢~ ) in 

(I.39). Expanding this matrix in monomials of the fields and taking into account time 

inversion and internal symmetry one sees easily that only one relevant term with 

coupling constant of positive ~-dimension survives; i t  is proportional to s and 

couples the s and m modes. Employing the in f in i tes imal  generators l i = { l  i,W,~ | i = 1 , , . I ~  

~.,~ ~=~(~...#V} we obtain except i r re levant  terms 

(II.16) 

We now combine ( I I .  15 and 16) to extract  the relevant part of the action integral 

( in renormalized form without se l f  loop counter terms) 

, % [ ~  ~ ~ ~ ),~. C~= ~ v  ~ 
- A  

~ . ~ F  ~. E~. ~(~)~ - ~ .  ~(~z) v~ I 

(II .17) 

The connection between the bare and the renormalized quant i t ies is given by (11.3) 

and 
~ -  • ~ ~.1|~ . ~ 

~~.{~ = ~ ~ . x ~ t ,  t|~ 
2. Determination of the Z-factors 

(II.18) 

The determination of the various Z-factors fol lows the same recipe as in s ta t ics .  The 

vertex functions (one- l ine- i r reduc ib le  diagrams) are calculated in a loop expansion 

about the free action 
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(11.19) 

by analy t ic  continuation in dimension d and the ar is ing poles in ~ = 4-d are cancelled 

by su i tab ly  chosen Z-factors. I f  the Z-factors have been determined up to a given or- 

der of the loop expansion in the next order only a f i n i t e  number of vertex functions 

(the so cal led p r im i t i v  divergent) shows poles proportional to £ - I  which then deter- 

mine the Z-factors to that order. Because the p r im i t i ve l y  divergent vertex functions 

r s, I sss, F sm' F ss (II.2o) 

correspond to the relevant terms in J there are normally enough Z-factors to cancel 

al l  poles. This fact is called renormalizability of the theory. Proving the renorma- 

l i z a b i l i t y  of our action we have to regard al l  symmetries of the theory and in par- 

t icular time inversion symmetry. The latterleaves only one coupling constant and one 

associated Z-factor for the two mode coupling terms. On the other hand, time inver- 

sion symmetry results in a vast number of correlation response theorems. These theo- 

rems lead to connections of dynamic and static quantities calculated with the Hamil- 

t o n i a n ~  in par t icu lar ,  we can show that the s ta t i c  renormalizations Z s, Zm, Z~-, 

Z u work in dynamics as well and we need only one mode coupling renormalization Z v. 

For a detai led proof of the renormal izab i l i ty  by means of re lat ions between d i f fe ren t  

p r im i t i ve  divergencies see De Dominicis, P e l i t i  [9~ . 

The superf ic ia l  degree of divergence of the Fourier transformed vertex functions is 

given by the i r  naive or{w.-dimension which is equal to the dimension of the coe f f i -  

cients of the corresponding monomials in the action (11.17). Due to the conservation 

property of the f i e l d  m, however, from any vertex function containing a ~ )  can be 

extracted at least one factor  q. Thus the superf ic ia l  degree of divergence is reduced 

and the vertex functions ~m,~, ~mm' r~ss exh ib i t  only logarithmic divergencies (de- 

gree = O) at d=4. F u r t h e r , ~ m m  has no pr imi t ive  divergencies and therefore re- 

quires no subtraction. We conclude that in minimal renormalization 

ZmZ m = i (11.21) 

On the other hand, (I.24) in renormalized form leads to 

(II.22) 
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As the two mean values are renormalized they are free of poles in ~ and therefore 

Z m = i (11.23) 

which leads back to (11.6). 

The conservation property also lowers the super f ic ia l  degree of divergence of some 

i r reducib le vertex function with composite f i e l d  insert ions. For instance ~ ' ~ s ; t ~ ,  

which is calculated from a l l  i r reducib le diagrams with a ~'and a s leg and one addi- 

t ional in teract ion vertex ~s, has ~W,-dimension Zero but i t s  divergence is lowered 

by one because an over, a l l  q- factor s p l i ~ o f f .  Therefore, r~s;(~s) has no p r im i t i ve  

divergencies, a fact  to be exploited below. 

Consider the f luctuat ion response theorem (1.27) (renormalized) 

where we have defined the composite f i e l d  (using (11.21) 

Insertions o f ~  y ie ld  a l l  _.--resp°nses to a physical f i e l d  coupled to s (see 1.29). 

Relation (11.24) shows t h a t ~ $ i s  f u l l y  renormalized and does not give r ise  to new 

divergencies or poles in ~ . Writing now in i r reducib le parts 

we get ( for  v ~= o) 

(11.26) 

) 

Z~Z v = ZsZ m (11.27) 

because divergencies do not arise in the various parts of (11.26). From (11.18) we 

f ind 

= 

and recognize that in our case (Zm=l) the mode coupling constant is not renormalized. 

To recapi tu late:  via the corre lat ion response theorem the conservation property of 

the generator f i e l d  m provides us with two Ward i den t i t i es  (11.21,27) which w i l l  be 
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of great use for the derivation of exact resul.ts, especially of cri t ical exponents. 

I t  only remains to ca l cu la t e  the three Z-factors  Z ~ , Z~ and Z s. 

3. The Renormalization Group Equation 

Now vie are in position to derive the renormalization group equation. First let  us 

recall that the parameterS, in the Hamiltonian (I I .2) and the action (II.17) has 

been introduced by the renormalizations (II.3,18). Written in terms of bare quanti- 

t ies~and ~are independent o f ~  and so are all bare Green functions and vertex 

functions. Let us consider a vertex function _r~l ,~2 . . . .  with external legs cor- 

responding to the fields (~¢jYLI .... These fields may be some combination of s~',m,~.. 

The independence of the bare theory from the parameter~ leads to 

"',... T', e.))l,.,,.,..,., 
Introducing the functions 

(II.3o) 

we f inal ly  obtain the renormalization group equation: 

The functions ~,~¢~j~sdepend on u only whereas the other functions depend on U~V 

and ~ , the dimensionless renormalized parameters. They can be computed directly 

from the Z-factors by use of the renormalizations (II.3,18) and they have no poles 

in ~ . As a consequence of (II.6,23,28) we get the exact relations 

(II.32) 
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The renormalization group equation can be integrated by the method of characteristics 
which are defined by 

If the initial (I=1) dimensionless parameters u,v,~ belong to the region of attrac- 
tion (for l--)0) of a "infrared" stable fixed point u~ ,v m, ~ ,  this fixed point 

determines the behaviour of all r-functions in the scaling limit I ~ l  l ~ . I ~  
l((~.For any r = r...~i.., we define a function 

and a function d (~) as the ~-dimension of It, hence 

with ¢ dimensionless. Asymptotically then reads the solution of (II.31) 

which displays the scaling behaviour with the usual critical exponents 

~-~,~, , ~ :  ( Z - ~ )  "~ ~ ~ - ~ .  

I f  ~ 0  we see from (11.32) that ~ . _  l./~. 

and obtain the well known dynamical c r i t i ca l  exponent 

(II.34) 

(II.35) 

(II.36) 

(11.37) 

- I,-£/L = (h- (11.38~ 

From Gss =I~,~ "&. P~.~, we find the particular scalinq form of the dynamic structure 
factor setting ( ,  ~llw. 

Gs~ (I,~,~) -- ~'~"-G(~.I, ~.~'~) 
with the correlation length ~ ~ ~ -  

(II.39) 
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I t  is possible that ~ =  0 (weak scaling fixed point of De Dominicis, Pel i t i  C9] ). 

From the def in i t ion o f~  in the action (11.17) i t  is obvious that in this case~ is 

a dangerous irrelevant variable and corrections to scaling play an important role. 

With a correction exponent 

o, >o 

varies asymptotically as 

: 

(II.4o) 

(11.41) 

where fo is a nonuniversal quantity. Thus two di f ferent  time scales emerge the or- 

ders of magnitude being given by characterist ic frequencies 

~ " ~'S" I"" ~ 'I ~ ' ' ' ~ '  " & ,  ('I'~) (11.4~> 

To demonstrate what kinds of fixed points arise in our model we give the results of 

a one-loop calculation of the dynamic quantit ies: 

(~,-~.[(A '--~-)-6--})" + o(~,',~o',~,')I ~,,.~> 
:~.- (~ ~,,-~,.} 1.(~.)" + 0 (~,',z,o', ,>'> 

From ( ~ , l - l a n d  ~ | ~  11 ~) we find 

I .  N • 4P: 

2. 

)~" 
N:~ 4P: 

(~) ' :  z~. (~+ 4~lJv)~ 4v 

(11.44) 

(11.45) 

Therefore, i f  the dimension N of the representation to which the order parameter be- 

longs is too large in comparison to the number of group parameters P (in our model 

N ) 4P + O ( ~ o r ,  equivalently, i f  the continuous symmetry is not high enough only 

weak scaling holds with a dynamical c r i t i ca l  exponent Zs=d/2+~j ) d/2. The relevance 

of weak scaling to the superfluid transi t ion in He has been discussed f i r s t  by De Do- 

minicis, Pe l i t i  [9~ and la ter  by Dohm et al .  [ 1 9 ] .  
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I I I .  Dynamic Suscept ib i . l i tz  at the Coexistence L.ine 

To demonstrate how the renormalization group and a sui table perturbation theory com- 

bine to y ie ld  universal scaling functions we paraphrase some resul ts of Horner and 

Sch~fer [2o,211 concerning the Goldstone mode s ingu la r i t i es  at the coexistence cur- 

v e .  

For s imp l i c i t y  we neglect mode coupling (v=O in (11.17)) whereupon our model co inc i -  

des with model A of Halperin, Hohenberg, Ma [3~ . The f i e l d  m decouples from the or- 

der parameter and may be eliminated. So we can employ ~= i  and Z~=I in our formulas. 

The composite f i e l d ~ ( l l . 2 5 )  essent ia l ly  now equals the f i e l d  s~ and the corre- 

la t ion  response theorem leads to the Ward iden t i t y  

Z ~  : i ( I I I . 1 )  

Therefore we need only one dynamical renormalization Z s and from (11.18,3o) we obtain 

(111.2) 

Moreover, we can include a constant external magnetic f i e l d  H or,  equivalent ly ,  con- 

sider vertex functions depending on a constant magnetization M : 4 s ) .  As in the sta- 

t i c  case [ i ~  we obtain the renormalization group equation for  a vertex function with 

n s-legs and ~ s~-legs 

(I I I .3) 

In par t i cu la r ,  from (11.36) the scaling behaviour of the dynamic suscep t i b i l i t y  

= - (111.4)  

is found to be 

e C,/,, 
I f  by a sui table parameter I~ the thermodynamic variables ~I~}:~"lY~ ) ~ ) =  ~ '~ /~  

are chosen to be outside the c r i t i c a l  region we can do a perturbat ive expansion of  

the r igh t  hand side of  (111.5). This c lea r l y  requires that the frequency is not too 

large, otherwise one has to do a dynamical operator product expansion [81 . 

As Horner and Sch~fer have shown, also at the coexistence l i ne  a perturbat ive expan- 
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sion is possible, i f  one chooses the correct free Hamiltonian or action as the star-  

t ing point of the expansion and sums up the so cal led vertex i r reduc ib le  parts. The 

f i r s t  condit ion can be sat is f ied by adapting renormalization condit ions so as to ma- 

ke the Goldstone s ingu la r i t ies  t ractable.  The resummation of vertex i r reducib le  parts 

is most easi ly performed by introduct ion of dummy f i e l d s ~  and ~ . 

As well as with the action ~ (11.17) without the mode couplings and the f ie lds  m, 

we can take averages with a new action 

~.[t.~ ~. ~..~..~ _ ~  + counter terms 1 

Integrat ing out i f , ) #  we come back to ~ Introducing now a coupling to an external 

f i e l d  H and defining'~'new f luc tuat ing variables-- (<~}- <~ } :  ~ )  • ~ '  = O )  

we obtain 

~ P i ~ o .  : ~ ( I I I .7)  

+ counter terms I 

( I I I .8)  

Rotational invariance resul ts in a set of l~!ard idendi t ies for  the new vertex functions 

2LH -- h 
} 

; 

(III.9) 

)low we choose the renormalization and define thereby the counter terms at the coexi- 

stence line H=O, M~#O such that 

pL C0,o,o,o) (111. o) 

This ensures that the Goldstone s ingu la r i t ies  ar is ing in the transverse propagators 

for ~:0 are reduced by the dummy f i e l d  propagators because for  Q--)O now G ~  ~ G ~ - - ~ 0  

and the transversal modes couple t o ~ o n l y .  
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The new constants in (111.8) ~ a n d ~ a r e  determined by the two condit ions (111.1o). 

Together with the counter terms the i r  connection with the old parameters~and~,may 

be found by integrat ing out the dummy f ie lds  ~ , ~  . Clearly condit ion ( I I I . I o )  

which refers to the coexistence l ine  y ie lds r : O. 

The new vertex functions ~! can now be calculated in a loop expansion. The old ~-func- 

t ions are then given by in general nonlinear re la t ions,  e .g. ,  

~,,~ 112~./.4 • P ~ , ,  T ' ~  - P - % , "  ( (III.11) 

where the inverse I ~  -function reflects the resummation,~hoosing the magnetiza- 

tion M' to be outside the critical region, e.g., 

~ : -& ~;÷~ : ~v+~ ÷ OCt') (111.12) 

and using the scal ing equation (111.5) and the de f in i t i on  (111.4) we can re late the 

longi tudinal  suscep t ib i l i t y )~ {  for  any magnetization at the coexistence l ine  M:const. ° 

' ~ ; ~  to the perturbational calculat ion of [ ~  for  M'. The resu l t  is ( in a one- 

loop calculat ion) 

: + ,-7#" L _ ~ _ -  , 
,4 ,  ~ .(L ( ~ ) -  4') (ili.13) #'.l-@ 

[¥~ t~).  N ~'" ] 

+ 

where we have defined 

(III.14) 

The expression (111.13) has much in common with that of  Mazenko [ 2 2 ~ .  The Goldstone 

s ingu lar i ty  (~ tl& occurs in the same form, the other terms, however, are d i f f e ren t l y  

arranged. As Sch~fer [21]  pointed out, in (111.13) the Goldstone s ingu la r i t i es  are 

consistenly resummed and are free of exponentiations which are somewhat a rb i t ra ry  but 

inavoidable i f  ~ ( ~ )  is only calculated to some order o f t  • 
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Summary 

Going below the critical temperature, the existence of a non-zero 
average value of the order parameter induces qualitatively new features 
in the critical behaviour in a variety of systems. A crucial role is 
played by the symmetry in the intrinsic space of the order parameter 
degrees of freedom. This lecture is focused on rotationally invariant 
systems, others are only briefly mentioned. 

At first, properties of the isotropic multicomponent systems are 
described on a phenomenological basis in cases of purely dissipative 
systems and of systems with reversible mode coupling as well. The main 
feature is that the orientational fluctuations are dominating the 
large-distance, long-time behaviour of the system, and the parallel 
and longitudinal order parameter correlation functions can be expressed 
in terms of the correlation function for the orientational fluctuations. 
In the purely relaxational model such qualitative arguments predict 
a power-law decay in space and time of the cerrelation functions. 

These properties are subsequently considered within the frame- 
work of the semimacroscopic theory. In this context the theoretical 
means to handle the problems in the ordered phase i.e. new type of 
building blocks replacing the usual self energies are introduced, both 
for the transverse and longitudinal order parameter response and corre- 
lation functions. It is shown how characteristics of the Goldstone 
mode can be expressed in terms of them. The longitudinal correlation 
function is discussed especially from the point of view of how the 
results of the phenomenological considerations can be justified. 

Special emphasis is given to purely dynamic effects, such as the 
Goldstone-mode induced singularity in the transport coefficient of 
the parallel total magnetization in an isotropic antiferromagnet, 
recently investigated also experimentally. It is shown that the theory 
can account for the experimental findings in RbMnF~ , not only con- 

5 
cerning the wave-n~aber dependence of the transport coefficient in 
the hydrodynamic region but also regarding its magnitude. 

+ 
Permanent address 
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I. General properties of isotropic multicomponent systems 

Consider systems with a vector order parameter ~(~1,...,~n ) and 

suppose that there exists a continuous rotational symmetry in the 

intrinsic space of the order parameter degrees of freedom. Below T 
c 

an important feature is the spontaneous breaking of rotational sym- 

metry due to the non-zero average value of the order parameter. 

We assume that the order parameter in equilibrium points in the di- 

rection of the first axis and denote its value by P: 

p ~ <~I > (1.1) 

At first we consider purely relaxational models in which only 

dissipative coupling between the fluctuations is included. To 

analyse the dynamics of the system in the ordered phase our starting 

point is the recognition that there are two relaxational time scales; 

one for the fluctuations of the magnitude of the order parameter and 

an other one for the orientational fluctuations I . It is then natu- 

ral to introduce new variables, namely a random variable 0 measuring 

the magnitude of the order parameter 

2 2 (I .2) 

a 
and a l l  t h e  v a r i a b l e s  ~ n e c e s s a r y  t o  s p e c i f y  t h e  o r i e n t a t i o n  o f  t h e  

o r d e r  p a r a m e t e r .  L e t  us d e n o t e  t h e  a b o v e - m e n t i o n e d  r e l a x a t i o n a l  t i m e s  

by  Tp (k )  and ~ ( k ) ,  r e s p e c t i v e l y ,  f o r  a f l u c t u a t i o n  o f  w a v e - n u m b e r  k .  

In equilibrium the order parameter can equally point in any di- 

rection, thus no energy is necessary to rotate the order para- 

meter uniformly. Consequently, if there is a long wave-length orien- 

tational fluctuation of the order parameter, the associated energy 

is small and the relaxation time to equilibrium is long. This means 

that ~(k)÷~ if k÷O. Tp(k) may remain finite in the same limit or 

may also tend to infinity depending on whether the order parameter 
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is conserved or not. But in any case 

Tp (k) ~ ~ ' for small k. (1 .3) 

As a consequence, the long wave-length and long time fluctuations of 

the order parameter are orientational fluctuations maintaining the 

magnitude of the order parameter constant. We will be interested in 

this limit and will not treat the magnitude of the order parameter 

as a separate variable. Patashinskii and Pokrovskii 2 exploited the 

consequences of fixed-length orientational fluctuations of the order 

parameter for static properties. Since their phenomenological consi- 

derations are based on the existence of local equilibrium, they can 

naturally be extended to include time dependence for large enough 

t-s when local equilibrium is reached. Then a simple picture arises 

as follows. 

For small-angle fluctuations we can write 

~a = P ~a +''" a >I 2 

I 2 
'~t°l = - P ~ X %, +---  

oc 

By introducing the correlation function 

C~(r,t) = <~a(1)~a(2)>, 

r ~ I Xl-X 21 , t =- t 1-t 2 , 

the expressions 

1 .4) 

i .5) 

a >. 2 I .6) 

(r,t) = p2C~(r,t) I .7) C± 

and 

n-12 p2[C~ (r't) ]2 I .8) 
ell (r,t) - 

follow for the perpendicular and parallel order parameter correlation 

functions, respectively, in the limit of large r and t. An important 

ingredient in the basic physics of the problem which has been taken 

into account is that the interaction between the orientational 
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fluctuations disappears in the small k, small ~ limit and conse- 

quently a decoupling of fluctuations becomes exact. Moreover, the 

leading terms are those which contain the possible smallest number 

of C~ factors. 

Before entering the discussion of the time dependences of these 

correlation functions let us recall briefly the main features of the 

static results. 

or in momentum space, 

A ,~.d-2 
C~(r) = d[r) ' (1 .9) 

I 1 
C~(k) - Ps k 2 (1 .10) 

A d is a constant depending on the dimensionality of space. The co- 

herence length for the orientational fluctuations is given in tens 

of Ps ' I 

d-2 
{9 = PS (Josephso~s relation). (1.1]) 

Ps is specified by writing the excess free energy in the presence 

of an orientational fluctuation as 

dl n 2 
aF = ]d x~ Ps [ (VOs) (1.12) 

s=2 

By subsituting eq. (1.9) into eq. (1.8) one obtains 2 

and in momentum space 

(1.13) 

n-1 p2 1 
Cll(k) - 2 Ps 2 k s , E = 4-d (1.14) 

The singularity of the parallel correlation function as k~O is re- 

lated to the coexistence curve singularity below T c in isotropic 

systems. The static correlation functions and the problem of the co- 

existence curve singularity have been studied by a large number of 

authors. Since the discussion of these static properties is not the 



53 

purpose of this lecture, we can only give a selection of references 

3 4-8 
by quoting an early one and some of the recent ones 

Consider now the time dependence of the correlation functions. We 

still continue to deal with the purely relaxational models and for 

the sake of definiteness let us choose the case when the order para- 

meter is not conserved. Then the correlation function of the orien- 

tational fluctuations in the small k small ~ region takes the simple 

form 

2co~) (k) 
C~(k,~) = C~(k) 2 2 ' (1.15) 

CO +~(~ (k) 

where the characteristic frequency is given by 

~9(k) = X~ = r~ps k2 (I .16) 

Here X~ and F~ are the static response function and the kinetic co- 

efficient, respectively, connected with changing the orientation of 

the order parameter (in our units C~(k) = x~(k)). Dynamical sca- 
I ] 

ling9,10 requires 

d-z 
F~) N ~) (k~)<<l) (1.17) 

where z is the dynamical critical exponent which has been calculated 

within the renormalisation group theory by ~ and I/n expansions (see 

for a review ref. 11). The characteristic behaviour of the correla- 

tion functions is most clearly exhibited in terms of the space-time 

variables 

C~)(r,t) = C~)(r) ~ t ( ) (1.18) 

where 

= co~(k=~ ) (1.19) T~ 

For fixed r the correlation function falls off as a power law in time: 

__~ 1 
C~(r,t) t÷~ t(d-2)/2 (1.20) 

According to eqs. (1.7) and (1.8) the transverse order parameter 
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correlation function is of the same form while the longitudinal one 

behaves as 

(@~ ~r 2) t÷~" td-21 Cit(r,t) = Cfi(r) 42 ( ) (1.21) 

for given r. It has to be emphasized that the same coherence length 

~ and the same time constant T~, characterising the orientational 

fluctuations of the order parameter, enter both the transverse and 

longitudinal correlation functions. 

Until now we have treated the purely relaxational model with an 

isotropic n-component non-conserved order parameter. Such a model is, 

of course, an artifact since due to the rotational invariance in the 

component space there exist a number of conserved fields which have 

to be included when the dynamical properties of the system are dis- 

cussed I'12. They are the generators for the rotation of the order pa- 

rameter and can be represented by an antisymmetric tensor field LaB 

with n(n-1) 2 components, a,B=1,2,...,n. Examples for such fields are 

the magnetisation perpendicular to the easy plane in planar magnetic 

systems and the three components of the total magnetisation in the 

isotropic antiferromagnet. 

Let us continue by considering the properties of such a general 

n-component t~-L model. First note that there are now two dissipative 

characteristic frequencies having the same k-dependences to be taken 

into account. One of them, ~,is connected again with the relaxational 

process of the orientational fluctuations of the order parameter and 

is again given by eq. (1.16). The other one is related to the dif- 

fusion process for the L field 

~aBk 2 

~LaS - XL (1.22) 

where lab is the transport coefficient and XL is the corresponding 

static susceptibility. The basic new feature is, however, the 
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appearance of reversible mode-coupling terms in the equation of 

motion. Below T c in the hydrodynamic region they lead to a linear 

coupling beween the variables ~a and L1a: 

-I (I .23) ~ 
a = g XL L1a 

L1a = - g x~1~a (I .24) 

where g is the mode coupling constant. As a result, the orientational 

waves of the order parameter are associated with a mode of linear 

1,12 
dispersion 

i ~(k) = c k - ~ Dk 2 , I .25) 

where 

c k= g (XLX~) -I/2 1.26) 

and the damping arising from the dissipative processes is 

Dk 2 = ~ + co L 1.27) 

The property that Re (0(k)~O if k~O is a manifestation of Goldston~s 

theorem and arises from the fact that the rotation of the average 

order parameter as a whole does not change the energy of the system. 

Such a motion cannot lead either to any dissipative process, which is 

manifested by that ~0 if k~0, as already mentioned. 

Note that c is given in terms of purely static quantities so, 

using e-expansion results for the static transverse order parameter 

13 
susceptibility ,we can write 

I I 
c = g P(I +~ e ~ + 0 (e2)) (1.28) 

where P should be substituted by its expression to O(e) . 

In the hydrodynamic region also an exact expression can be derived 

for the transverse order parameter correlation function which, in 

turn, through eqs. (1.7) and (1.8) yields the parallel order parameter 
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correlation function, too. We give here the latter in the special 

case when d=3 and in the region where damping is negligible: 

2 
CII (k,~) = CI{ (k) ~ ~n \~+ c k / (I .29) 

An other interesting quantity to be studied is the relaxation of 

the LaB fields for a,S~2 i.e. of such generator fields which are not 

linearly coupled to the order parameter fluctuations. In case of the 

antiferromagnet (n=3) there is only one such quantity, namely the 

longitudinal total magnetisation. This problem will be discussed in 

Sect. 3. 
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2. Semimacroscopic theory 

Let us now consider the properties we have discussed in the pre- 

vious section on the basis of the nonlinear semimacroscopic equations 

of motion used extensively in the literature to treat time-dependent 

critical properties (see for recent reviews refs. 11, 14, 15). 

2.1 The transverse order parameter correlation function in the 

~-L model 

As a first example the coupling of the transverse order parameter 

fluctuations and the fluctuations of the L1a field will be discussed. 

This coupling is manifested in the structure of the self-energies 16'17 

for the transverse order parameter propagator and 

s m : :z 

f- 
(zz  

for the propagator of the L1a field. Here Z± is the self-energy of 

the transverse order parameter propagator and M1a is the self-energy 

for the L1a field. The blocks whose contributions are denoted by a 

letter with a hat contain diagrams which are double-irreducible i.e. 

they cannot be split into two parts by cutting a single order para- 

meter or L1s propagator line. G± and GLI ~ ^ are transverse order para- 

meter and L1a propagators, respectively, containing only double-irre- 

ducible self-energies. ~ and ~' are vertices which convert transverse 
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order parameter fluctuations into those of Lla and vice versa. They 

are non-zero only in the ordered phase and represent the coupling 

discussed at the end of the previous section. 

These double-irreducible building blocks are non-singular, and the 

various physical quantities below T c can be expressed in terms of 

them. Thus,for example,the kinetic coefficient for the relaxation of 

the orientational fluctuations F~ can be written in the following 

form 
A 

I - ( ~ - l h  

F(o) A (2.3) 

I + r(°)(~±) ~-i~ o 

where r (o) is the bare kinetic coefficient. When a perturbation expan- 

sion is applied,one has to calculate these functions instead of the 

original self-energies to the desired order,to ensure that the 

response and correlation functions fulfil the general relationships 

reflecting symmetry breaking. Therefore any consequent approximation 

involves the summation of an infinite series of selected self-energy 

diagrams. 

On the basis of this analysis of the structure of the self-ener- 

gies it has also been shown that the transverse order parameter fluc- 

tuations and those of the L1a fields share the same excitation 

spectra in the ordered phase,not only in the hydrodynamic region but 

in the whole region where the semimacroscopic theory is applicable. 

The dispersion of this mode can be calculated from the equation 16'17 

A 
i~(o) ~71 ) (I (°)k2i~ A AA, (.k 2 M1a) - AA = O (2.4) 

F 

where ~(o) is the bare transport coefficient for the LIs field. The 

velocity of the mode in the hydrodynamic region has been calculated 

directly by s-expansion, in dynamics,using various approaches. 
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Siggia 18 and Hohenberg et al. 19 (for n=2) and Sasvari and 

Szepfalusy 17 (for general n) have obtained results in accord with the 

macroscopic expression (eqs. (1.26) and (1.28)) while the result of 

2O 
Mazenko et al. (for n=3) is in disagreement with it. The damping D 

has also been calculated by the authors cited above. It can most 

suitably be characterised by the universal amplitude ratio 

R 2 -= D/2C~ 2.5) 

To leading order in 

IKd (n-l) 2) I/2 
R 2 = - 2.6) e 2n-3 

where K d is the standard abbreviation 

Kd = 2-d+I -d/2[r(d/2) ]-I 2.7) 

2.2 Longitudinal order parameter correlation function 

The longitudinal order parameter response and correlation funtions 

also have interesting structure in the ordered phase below T c due to 

the symmetry breaking. The investigation of the parallel response 

function Gll is to be performed together with that of Gp, the response 

function for the square of the order parameter to an external field 

coupled to p 16'~ (p has been defined earlier by eq. (1.2)). The im- 

portant point is that, in the symmetry breaking phase,diagrams of GII 

appear in Gp as intermediate states carrying the total external mo- 

mentum and frequency, and vice versa, GII has intermediate states built 

up of irreducible diagrams of Gp . As a consequence,rearrangements of 

the perturbational series have to be performed similar to those which 

were necessary in the case of the transverse response function. To 

this aim let us represent the quartic interaction by 

Note that we use here a notation different from that of ref. 16. 

Namely r GII, G ~, ~, and ~' are denoted in ref. 16 by G L, ×pp Q, r 

~pp, ~ and ~2' respectively. 
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Those quantities,which are made up of only such diagrams which can- 

not be split into two parts by cutting either an order parameter pro- 

pagator or an interaction u-line,are called double-irreducible blocks 

and will be marked by a tilde. In terms of them,the self-energies ex- 

hibit the following structure: 

with 

The appearance of ~ and ~' vertices in eqs. (2.9) and (2.10), coupling 
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the longitudinal order parameter fluctuations to those of p, is a cha- 

racteristic of the ordered phase. 

In deriving eqs. (2.9) and (2.10) the method by Ma and Mazenko 21 

to generate perturbation expansion has been applied in ref. 16. Cor- 

respondingly, two types of self-energies are present; namely besides 

the usual ones, self-energy parts terminating in an external field 

conjugate to the order parameter, instead of a propagator line, also 

appear. Eqs. (2.9), (2.10) and (2.11) lead to 

(l+u~) (I+[i I) - u~' Ill 
GI' = (G-Io ~ ~ ~ , (2.1 2) 

- f)(1+u~) + u AA' 

+ 

G = (2 .13 )  
P (Gol-"~/i,) ( l+u~')  + u 7~' 

Martin et al. 

Similarly we can analyse the structure of the order parameter cor- 

relation function which can be written, in the spirit of the work by 

22 
t as 

~ll (2.14) 

where 

- Go I G-I i~ k 2 GI~ ~ - - [ I I '  o = £(o)  + (2 .15 )  

Here the self-energy [rL 

represented as 

is as above while [I(2) can graphically be 

12) An analysis of the structure of graphs contributing to [I can be 

carried out similarly to that of ~Jt (eq. (2.9)) yielding 
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Note that in the case of purely relaxational mode~ X' and conse- 

quently ~" are zero, so the expression for Gll simplifies considerably. 

Though the correlation function is of the same form in both cases,an 

essential difference is that, for the purely relaxational model, G' is 

the true response function and the fluctuation-dissipation theorem 21 

leads to the relation 

I (2) = ~ Im~ (2.17) 

After outlining all these rather formal properties of the pertur- 

bation series let us see now how the semimacroscopic theory can 

account for the behaviour of the parallel correlation function dis- 

cussed on a phenomenological basis in the first section.The form, 

given in eq. (1.8),for C}E means in the language of the diagrams of 

this section that 

(n-1)~ B 
if k,~O (2.18) 

Cu 2p2 

B 
where ~ is the contribution of the bubble diagram 

C~ 

q 

Here C± is the fully dressed transverse correlation function. Eq. (2.18) 

2 y y121 
requires that (o) ' II and be negligible, ~'~2P, ~P and 

F 
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~'~(n-I)2~ B in the k,~-<) limit. The proof can be given when some sim- 

plifying situation occurs which is the case in the limit n~ or when 

d<4. Consider first the large n limit which is well suited to exhibit 

the desired behaviour since the fluctuations in the magnitude of the 

order parameter tend to zero in this limit. In case of the relaxatio- 

nal model this limit below T c has been investigated by Tel 23 (for 

2<d<4), Mazenko 24 (for 2<d<4, k=O) and Mazenko et ai.20 (for d=3) . In 

terms of the general structure of diagrams sketched above the n~ 

limit means enormous simplifications namely ~I and 2) become zero 

(recall that Ill and [~I are anyhow zero in the relaxational model), ~=P 

and ~'=2P. Furthermore ~' is given exactly by the bubble of two trans- 

verse correlation function lines the contribution of which has been 

calculated by T~123" as 

~' 2 
= -- - m r  

_ -  

2' 2(1 i~) k-e 

where ~=~/(F(°)k2). B d is a numerical constant depending on d and F is 

the hypergeometric function. Eq. (2.19) shows that ~ is singular in 

the k,~O limit: if k=O ~<0 -e/2 and if 0)=0 ~k -C (e=4-d). The unper- 

2 
turbed propagator in G'il (eq. (2.15)) and ~ in the numerator of CIL 

i 

(eq. (2.14)) become negligible in this limit. From all these the be- 

haviour we wanted to verify follows immediately. 

The relaxational model has also been investigated near d=4 to one 

loop order 24 and also to two-loop order 25. The results can be inter- 

preted again as suppor~ng the validity of eq. (1.8) for C 0. Sch~fer 25 

used field theoretic renormalised perturbation expansion and intro- 

duced in that framework a similar structure of the parallel response 

function of the order parameter as discussed here. He has pointed 

out that Ward identities are essential in analysing e.g. the quantity 

corresponding to our ~H" Sch~fer's theory clearly demonstrates the 
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importance of the new blocks replacing the self-energies, since in a 

consistent perturbation expansion these are the quantities to be cal- 

culated to the desired loop order 

Including mode-coupling terms makes an interesting change regar- 

ding the leading term in Glf (eq. (2.12)). Namely, ~ remains finite 

in the small k,~ limit in this case,and the leading contribution 

comes from [if(k,c0) (Sasv~ri and Szepf~lusy, to be published). The 

conclusion for Cll remains, of course, the same. 

Finally, we note that the structures studied for Glt and G are not 
P 

restricted to isotropic multicomponent systems. The eqs. (2.1 2) and 
I! 

! 

(2.13) (with ~tt = lit = O, corresponding to the relaxational model) 

maintain the same form for n=1. 

More generally,when a discrete symmetry is present in case n~2,Gtl 

26 
can again be analysed in a similar manner It applies even for 

models suitable to describe the dynamics of displacive structural 

phase transitions in which case an irrelevant variable, the 

momentum conjugate to the displacement,is included since it plays 

an essential role. On this basis important features of the order 

parameter dynamics below T c at the antiferrodistortive transition 

of SrTiO 3 27 can be understood 26. 
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3. Longitudinal magnetisation correlation function in the 

antiferromagnet 

Besides the order parameter,another interesting quantity in an 

antiferromagnet is the total magnetisation. We have seen that the 

transverse fluctuations of the magnetisation are linearly coupled to 

the transverse order parameter fluctuations and,as a result, they 

share the same excitation spectra, namely, the spin waves. For sym- 

metry reasons the longitudinal magnetisation, or more generally in 

the n-component model, the LaB fields with a and B both larger than 

unity, obey equations of the type: 

d k2LaBk d-~ LaBk = - ~[](k) ( 3 . 1 )  

Phenomenological~ one would expect hydrodynamic wave vector depen- 

dence, i.e. normal diffusive behaviour with a lIl which is constant 

in the k+O limit. However, it has been found in spin wave theory 28 

and in mode coupling calculations 29'12 that the transport coefficient 

If! is not regular in the limit k+O: 

~]l(k) ~ k -e/2 ~=4-d (3.2) 

The process responsible for this behaviour is the decay of the longi- 

tudinal magnetisation into two propagating transverse order parameter 

fluctuations: 

- ~ ,  

• i 

which induces an effective long-range interaction between the longi- 

tudinal fluctuations of the magnetisation. As contrasted to the 

singular behaviour in the longitudinal order parameter correlation 

function, this effect is purely dynamical since such a coupling 
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leading to the singular behaviour of l]l(k) is brought in through the 

reversible mode-coupling terms. 

17 
The correlation function of the LaB field is obtained as 

2 M (2) (k ~) 
l(O)k2 + 2 

CII(LaB;k'~) = i~ 2 (3.3) 
I I ~ (o) k 2 M 2 (k,~) 1 

where a,B~2, l(°)is the bare transport coefficient and the self- 

energies M 2 and M~ 2) (the notation MaB = M 2 for a,B>2 is used) are 

given diagrammatically as 

, 

Since the free energy is quadratic in the L field it follows from the 

fluctuation-dissipation theorem of Deker and Haake 30 that 

2 
M 2)(k,~) = ~ ,cO~k 2 Re M2(k,~) (3.4) 

l 

The physical transport coefficient 111(k) can be expressed in 

terms of the self-energy M~ 2) as follows 

~11(k) 
l(o) 

I + --~(°)k22 M~ 2) (k,- illl (k)k 2) (3.5) 

Recently there have been renormalisation group investigations of 

the problem, too 17'20. Carrying out an O(e) calculation the non-hy- 

drodynamic behaviour has been manifested in the sense that,in the 

limit k~<<1,terms proportional to Znk as well as to Zn ~ appeared in 

the expression for All" Though it has provided evidence for a singular 

behaviour in k,the form to which these logarithms should be exponen- 

tiated has not followed from the calculation. A plausible way to 

resolve the ambiguity of the exponentiation is to calculate the 
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contribution of the same type of diagram which gives the leading term 

in e in d dimensions. This implies that the bare coefficients, con- 

tained in the functions describing the transverse order parameter 

fluctuations in the intermediate states,are to be replaced by the 

corresponding renormalised ones. Such a procedure has been adopted in 

ref. 17 and the calculation has been carried out near four dimensions• 

Recently Sasvari and the present author 31 extended the calculation 

to dimensions 2<d<4 whose results I am going to present here. The 

diagram to be evaluated is: 

eL 

C~ 

2 dd 

M~ 2) (k,~) (i(o) k2) 2 (2H) d ~ (k+q) 

2_q2] 2 

• Cl(q,9)C±(k+q,~+~ ) 

where, to get the leading term for small k,~, C ± 

by the hydrodynamic expression 

2 
C±(k,~) = ~ Im G±(k,~) , 

p2 F (Ik2-i~) +g2p s 
G±(k,~) = --p 

s g2psk2+~ik4_i~(F+l) k2_~ 2 

(3.6) 

can be substituted 

(3.7) 

In eq. (3.6) gR denotes the renormalised mode-coupling constant. 

Its renormalisation has to be done in the spirit of mode-coupling 

theory, i.e.,by substituting the true static transverse susceptibility 

when calculating the mode-coupling vertex 29'12~ 

The author is indebted to Professor K. Kawasaki for a discussion 

on this point. 
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It yields: 

( 3 . 8 )  

where, as before, g is the bare mode-coupling constant which can be 

used to fix the time scale. We choose the units so that XL=I and cor- 

2 2 
respondingly c =g Ps' according to eq. (1.26). 

From eqs. (3.5) , (3.6), (3.7) and (3.8) we get for k~<<l 

where 

. reg ik Ill(k) = iszng(k ) + All ~ ) 

l~ling(k) = S d 2--~D2 (2_~k) -e/2 

(3.9) 

, ( 3 . 1 0 )  

= ( 3 . 1 1 )  
s i n  

.sing The result for Ifj (k) can appropriately be discussed by intro- 

ducing the universal amplitude ratio 

• ~2 e/2 d-2 I l~ing (k) (k~) = SdR2 --~-- 
R =- -I (3 .I 2) 

c ~ 

where ~ is the coherence length,eq. (I .11),and R 2 is defined by 

reg 
eq. (2.5). It! , the non-singular part of Ii;, has been calculated only 

17 
to 0(~) 

ireg Jl 

ising I! 

2n-I e/2 
2n-3 (k~) (3.13) 

power k -~/2 in I~ ing ~ agrees, of course, with the result of the The 

mode-coupling calculations. Taking the limit e÷O the expression for 

I,,, eq. (3.10), matches the result of the e-expansion 17'20. It can 

also be used directly in three dimensions to obtain the amplitude 

ratio in the physically interesting case. Eq. (3.12) yields 
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I R21/2 R = I-~ ~ d=3 (3.14) 

The magnetisation correlation function has been measured recently 

by neutron scattering in RbMnF 3 below the N~el point 32. Since RbMnF 3 

has an extremely small exchange anisotropy it is a very good example 

for an isotropic antiferromagnet. The experimenters have found a 

central peak with a width proportional to k x, x=I,45 +0,12 which, 

within experimental error, is in agreement with the theoretical pre- 

diction l,,(k)k2Nk 3/2 (for d=3) . A universal amplitude ratio A o, ana- 

logous to R, eq. (3.12), but with ~_ replacing ~({_ is the coherence 

length for the fluctuations in the magnitude of the order parameter 

below Tc) , has also been extracted from the measurement: 

o 
0,17 for ~_ = 3,2A 

o 
AD= 0,22 for ~_ = 1,9A 

which gives an experimental value for R as follows 

Rex p = A ° = 0,11 

(3.15) 

(3.16) 

o 
where {~ = 7,42 A has been taken for RbMnF3, using the expression for ~ 

g i v e n  by Hohenberg  e t  a l .  1 3 , a t  t h e  t e m p e r a t u r e  c o r r e s p o n d i n g  to  t h e  

experimental situation. 

To achieve a comparison with the theoretical value, eq. (3.14), 

one needs the amplitude ratio R 2. It has been calculated in a self- 

consistent way in three dimensions for n=2 by Hohenberg et al. 19 

Their result is R 2 = 0.09. Looking at the expression for R 2 (eq. (2.6)) 

in leading order in E one sees that its n-dependence is weak. If this 

property is expected to hold even in three dimensions one can take 

approximately the above value for R 2. It is also possible to extract 

32 
an approximate value for R 2 from the measurement of Horn et al. 

Namely, from the measured spin-wave peaks in Fig. I of ref. 32 one 
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can read off a value for R 2 which turns out to be practically in 

agreement with the above theoretical result. The experimental value 

of R 2 has to be taken with some care, however, because - as empha- 

sized by the above experimentalists - the resolution broadening in- 

fluences the sharp spin-wave peaks considerably. If, nevertheless,we 

substitue the value R 2 ~0,09 into eq. (3.14),the obtained theoreti- 

cal value for R practically agrees with the measured one (eq. (3.16)). 

To understand this striking agreement a number of problems should be 

clarified. Firstly,one can put forward some convincing arguments that 

the corrections to the expression of Ill,as given by eq. (3.9),are 

negligible in the k~O limit 31 . Even so, however, there still remains 

to be explained why a correction term besides the leading singular 

one has not been seen in the experiment, although, according to the 

e-expansion result (see eq. (3.13)),one would expect a considerable 

regular term in the region where the measurement has been done. 

Moreover, a problem in dynamics like the present one cannot be 

set~ed before resolving such contradictions in statics as, e.g.,the 

difference in the critical temperature-dependences of the coherence 

13 
lengths above and below T 

c 
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4. Longitudinal magnetisation correlation function of isotropic 

ferroma~nets 

The transverse and longitudinal fluctuations of the order parameter 

in the Heisenberg ferromagnet below the Curie point has been studied, 

21 
by applying renormalisation group techniques,first by Ma and Mazenko , 

The tranSverse components are fluctuating as spin wave-modes while 

the longitudinal one is relaxing to its equilibrium value. In this 

lecture I want to discuss this relaxational process which exhibits 

interesting singular behavior. 

Let us write the relaxional rate in the usual form 

_ r.(k) k 2 (4.1) 
~k X,z(k) 

where Xn is the longitudinal static susceptibility, and Fll is the 

corresponding transport coefficient. 

A peculiarity of the Heisenberg ferromagnet is that only its 

static properties follow the conventional theory for d>4, while for 

its dynamical ones the critical dimensionality d c = 6 33. For 

dimensions d>4 two coherence lengths play a role, namely the trans- 

verse one (agreeing with ~ as defined by eq. (1.11),now with Ps = p2) 

and the longitudinal one given as 

El, = (u p2)I/2 (4.2) 

where u is the quartic interaction. The latter one enters Xi;,having 

an Ornstein-Zernicke form 

XI~ 1 = 2~1] "2 + k 2 ( 4 . 3 )  

The characteristic frequency is expected to have a generalised 

34 
scaling form 

~k = kz ~(k~± 'k~u) (4.4) 

d IO 
with dynamical critical exponent z = 1 + ~ • 
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The main contribution to the transport coefficient Ell is coming 

from the interaction of the longitudinal magnetization with spin-wave 

21 
modes. Ma and Mazenko have carried out an O(£) calculation of 

FII (e = 6-d) and found a singular wave-number dependence of FI[ in 

the hydrodynamic region. They have exponentiated the singular part 

of rLl (k) into the following form 

e/2 (4 5) Fit (k) = F (o) (A~±) (k~±)-e/6 ; k~±<<l 

Here A is the cut-off wave-number, and the formula has been written 

in the notation of the present paper. 

How to exponentiate the e-expansion result is, however, not unique 

in this case,similarly to that discussed in the previous section. 

. 35 Sasvarm reconsidered the problem by adopting the procedure used 

in the O(n) symmetric model 17. In this way he has found a result 

different from that of Ma and Mazenko, namely 

F,, (k) - F(°) c/2[ -c/3 ] 2 (~I A) (k~±) + 1 , k~±<<1 (4.6) 

After substituting eqs. (4.1), (4.3) and (4.6) into eq. (4.4) the 

scaling function of the relaxational rate of the longitudinal magneti- 
35 sation to O(e) is obtained as 

[ F(°) ,3 /2  (~±k) s/2 -s/3 
Q(k{ i, k611) =-Tn (~llk) z (k~±) + I (4.7) 

Einally, it is worth mentioning that F, (k), as given by eq. (4.6), 

predicts in three dimensions a singular k-dependence, k -I, which 

agrees with the mode-coupling result in d = 3 by Schwabl and Michel 36 

37 and Schwabl . This is not surprising since the diagram which had to 

be evaluated near 6 dimensions is at the same time the leading mode- 

coupling diagram. 
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The Migdal Approximation and Other New Methods 

in the Real-Space Renormalization Group Approach to Critical Dynamics 

Masuo SUZUKI 

Department of Physics 

University of Tokyo 

Hongo, Bunkyo-ku 

Tokyo, Japan 

Abstract 

A historical review of linear and nonlinear critical slowing down is 

briefly given for the kinetic Ising model. Several recent papers on 

the real-space RG approach to critical dynamics are also reviewed brief- 

ly. The main part of this paper is to present the fundamental idea of 

the real-space RG approach and to explain explicitly the Migdal approach 

to critical dynamics. 

i. Linear and nonlinear critical slowing down 

In this section we review briefly some general aspects of critical 

slowing down. The instability of the relevant system near the critical 

point causes an anomalously slow relaxation of the order parameter, as 

was discussed phenomenologically by van Hove. That is, the relaxation 

time T is proportional to the susceptibility X ~ (T - Tc)7 in his theory. 

It is well-known that this is not necessarily true even in the simple 

kinetic Ising model. I)'2)'" Our problem is to study how the true critical 

singularity of slowing down deviates from van Hove's thermodynamic sin- 

gularity. 

For this purpose we define 3) the linear relaxation time T~ ~) for an 

arbitrary hermitian physical quantity A by 

~) = f~ ~(t)/~(0) dt (ii) 
0 

where %AA(t) is the relaxation function defined by 4) 

%AA(t) = 8{ (i, i(t)) - lim(h, A(t) } (1.2) 
t÷~ 

and (B, A) denotes the following canonical correlation 4) 
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(B, A) = -~ 0 ~ B A> dl (1.3) 

for a quantum Hamiltonian ~ and (B, A) = <BA> for a classical system. 

It is easily shown 3) that ml Z) is positive definite for an hermitian 

operator A. Now the critical exponent of linear slowing down, Ai Z) , is 

defined by 3)'5)'6) 

(Z) -A~ £) 
TA ~ (T - T c) (1.4) 

Sometimes A~ ~) is denoted simply by A. Similarly we can discuss the 

nonlinear relaxation time m~ n£) defined by 7)'8) 

(n%) i ~ m A = (A(t) - <A>)/(A(0) - <A>) dt. (1.5) 
0 

Correspondingly the nonlinear critical slowing down exponent A (n%) is -A 
defined 7) by the following asymptotic form near T 

c 

(n%) .(nK) 
m A ~ (T - Tc)-AA (1.6) 

It was first found 7)'8) by the present author that there exists an ex- 

ample in which (nZ) + T(%) In fact, in the linear anisotropic XY- 

model, which has been solved exactly, the relaxation time in the non- 

linear response takes 7) a singularity of the form y(n£) ~ iH _ HcI-I/2; 

A(n~) 1 at zero temperature, while we have (1) = ~ near the critical field H c 

T ~ IH - Hcl-l; A (~) = i. Later, R~cz 9) found similar results in 

the Weiss kinetic Ising model using the molecular field expression of 

the magnetization obtained by Suzuki and Kubo. 2) Being stimulated by 

these facts R~cz I0) and Fisher II) found the following general scaling 

relation 

A(ni) = AiZ) - BA (1.7) 

where BA is the exponent characterizing the scaling of A with respect 

to temperature. This scaling relation (1.7) has been derived I0)'II)'12) 

under the assumptions that dynamic scaling can be extended to nonlinear 

phenomena and that the extent of the linear regime for a physical quan- 

tity A is scaled with the static exponent ~A' as was emphasized by 

Cs4pes and Ricz. 13) The first assumption has been proved by Bausch and 

Janssen 14) and by Suzuki 15). The above scaling relation (1.7) has also 

been confirmed by several authors 13)'16)~19) using the high temperature 

expansion method for nonlinear critical slow~g down formulated first by 
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the present author. 7) The scaling law (1.7) has been proved for some 

other exactly soluble models 20)'21) than those mentioned above. 7)'9) 

~) = Y for the According to van Hove's theory we have A~ relaxation of 

magnetization M in the kinetic Ising model. We study the difference 

(A - Y) in the succeeding sections. 

2. Derivation of the dynamical scaling law by means of Kadanoff's cell 

analysis and coarse graining of time 

The essential idea of the dynamic real-space RGA comes from Kadanoff's 

cell analysis 22) and from coarse graining of time proposed by Suzuki 23) 

to derive the dynamic scaling law. It will be instructive to summarize 

here the main derivation 23) of the dynamic scaling law by means of 

Kadanoff's cell analysis and coarse graining of time. 

For convenience we study the following generalized Ginzburg-Landau 

model: 

~s(r) _ (~) 63 + (r, t) 

where ~ denotes the Hamiltonian of the system and ~(r, t) is a 

Gaussian Markoffian random force with the correlation function 

(2.1) 

<~(r, t)~(r', t')> = 2F@(r - r')@ (t - t') (2.2) 

Following Kadanoff 22) we divide the system into cells of length L 

which is microscopically large but much smaller than the correlation 

length ~(T). Then r the scale of length R and reduced variables s and 

h are changed as 

R ÷ R' = R/L , s ÷ s' = sL y , h ÷h' = hL x (2.3) 

where s = (T - Tc)/T_, ~BH/kB T = h and R = Ir - r' i . Furthermore, ac- 

cording to Kadanoff ~2) the spin variable s(r) is scaled as 

s(r) ÷ s' (r) = Ld-Xs(r); x = d - ~/~ (2.4) 

with critical exponents B and ~. One of the key-points in dynamic RGA 

is to divide time region into cells of time length L z in an appropriate 

time unit, namely to perform coarse graining of time, as shown in Fig. 

i. Here the dynamic critical exponent z has to be determined so that 

the newly transformed equation of motion corresponding to (2.1) may 

become again Markoffian and of the same form as (2.1). Otherwise it 
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I . . . . . . .  I . . . . . . .  I . . . . . . .  I 
t z 

> t '=  [?z t 

~t 

Fig. i. Coarse graining of time; the time t is divided into cells 
of a time length L z according to t' = L-Zt. 

will become non-Markoffian. That is, the time t is changed as 

t ÷ t' = L-Zt or t = LZt ' (2.5) 

Correspondingly the effective strength of heat-bath interaction F and 

the random force D (r, t) are changed as 

F ÷ F' = L~F and ~ ÷ D' = LX+~ (2.6) 

Here the critical exponent ~can be also determined from the require- 

ment that the stochastic equation of motion (2.1) should be invariant 

after the scale transformations (2.4) ~ (2.6). This gives the follow- 

ing relation 

z : 2x- d +~= ~/~ +~: 2 - ~ +50 (2.7) 

The above invariance of the equation of motion under the scale trans- 

formations yields the following scaling property of the Fourier com- 

ponent of the time correlation <s(0, 0) s(r, t)> E S(R, e, h; t) : 

S(R, e, h; w) = L2(x-d)+Zs(R/L, LYs, LXh, Lz~); (2.8) 

The solution of this equation (2.8) takes the following scaling form 

S(R, g, h; ~) = R2(x-d)+Zs(RIs] I/y, s/lhl y/x, mRZ). (2.9) 

The above general argument suggests an explicit evaluation method of 

the critical exponent z or F' by making a cell analysis and coarse 

graining of time explicitly. In the above arguments both, the de- 

terministic part and fluctuating part in (2.1) are assumed to have the 

same scaling property, as it should be for critical phenomena. Recently 

Mori 24) extended the scaling arguments on equations of motion to a more 

general situation in non-equilibrium systems by admitting the possibil- 

ity that the deterministic part and fluctuating part are not necessarily 

scaled by the same scale factor. It should be remarked that quite re- 

cently the present author 25) proposed a more generalized nonlinear 

scaling theory of transient phenomena near the instability point in 
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order to clarify the essential feature of nonlinear fluctuation and 

onset of macroscopic structure which are very sensitive to initial 

conditions near the instability point. 

The relation A = ~z is easily shown in the succeeding section where 

is the exponent of the correlation length ~ (i.e., ~ ~ (T-Tc)-~). 

Thus, the evaluation of z leads to the determination of the critical 

exponent A. 

3. Fundamental formulation of the real-space renormalization group 

approach to critical dynamics 

we start with the following general master equation 

-~tP({s(r)}, t) = ~P({s(r)}, t) (3.11 

where P denotes the probability distribution function at time t and 

the temporal evolution operator of the system. ~ denotes an If 

operation to eliminate degrees of freedom in each cell and to eliminate 

rapid motions corresponding to coarse graining of time, then we have 

~P({s(~) }, t) = t'), (3.2) P' ({s' (~')}, 

or more explicitly we may write 

~ P(t)= ~ (et~p(0))= et'~'P' (01. (3.3) 

The scale transformation of P(0) into P' (0) gives the static renormal- 

ization group approach (RGA), and that of t~ into t'~ ' yields the 

dynamic RGA. If K denotes a typical strength of interaction in the 

system, then the above RGA gives the following general recursion for- 

mulae 

K' = f(K) and t' = g(K, t) -~ t g (K) (3.4) 

The first equation in (3.4) gives the fixed point K*(=K c) determined 

by K* = f(K*). The dynamic critical exponent z is determined by 

t'/t = g(K*) = L -z (3.5) 

for the scale factor L, as was discussed in (2.5). That is, 

z = - in g(K*)/~n L . (3.6) 

The characteristic relaxation time 8) of the system should satisfy the 

following relation 

T(K') = L-ZT(K) (3.7) 
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by definition, irrespective of relevant physical quantities. As before 

we assume that the relaxation time shows the following power law singu- 

larity 

T(E) = C(K- Kc)-A (3.8) 

with a critical exponent £. Equations (3.7) and (3.8) lead to 26) 

C(K' - Kc)-£'~- L-zC(K - Kc)-£ (3.9) 

Noting that 

K' = f (K) = f(K* + (K -- K*)) = K c + A" (K - K c) + ... ; 
(3 .10)  

A = (df(K)/dK)K=K, 

We obtain 

£ = z ~n L/£n A = ~z ; ~ = Zn L/Zn A. (3.11) 

The above formula for the correlation length exponent ~ is due to 

Wilson. 27)'28) Thus t it is sufficient to evaluate the value of z in 

order to study the critical slowing down exponent A. 

One of the most difficult problems in the real-space RGA is to take a 

partial elimination of degrees of freedom in (3.2) or (3.3), because 

the temporal evolution operator ~ is a set of noncommutable local 

operators. 

Recently many authors 29)%31) have tried to formUlate the real-space RG 

approach. The main idea of these papers is to renormalize the master 

equation (3.1) instead of (3.3) or to renormalize 30) approximately the 

operator ~ itself. That is, we apply ~ to (3.1): master 

~tP(t) = ~ ~P(t). (3.12) 

If we separate the equilibrium part of p(t) as 5)'6)'39) P(t) = Peq~(t) 

then we obtain 

~{Peq ~t~ (t) } = ~{Peq~ ~(t)}, 3.13) 

where 
I% 

 .iI i) I1 
1 

and 

Pi f( ...... oi ...... ) = f( ...... -°i ..... )' 

with the transition probability Wi(~ i )  d e f i n e d  by 2) 
1 Wi(e i)  = -~-a(1 - ~ . t a n h B ~ J . . ~ . )  

1 . 1 J  J 
3 

o r 3 2 ) , 3 3 )  

3.14) 

3.15) 

3.16)  
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Wi(o i) = exp(-Boi~Jijoj) ; oj = ±i. (3.17) 
3 

The choice of this form of the transition probability has been believe~ ) 

to be irrelevant to the critical behavior, and it is simply a matter of 

convenience. 

Essentially, the renormalization procedure of (3.13) should be based on 

that of (3.2) or (3.3). However, the formulation of (3.13) seems to be 

more practical. The latter formulation is apt to give rather intuitive 

arguments. 

In fact, the formulation (3.12) can be easily transformed 35) to the fol- 

lowing method of equations of motion: The distribution function P({oj}, 

t) can be expanded in an orthogonal complete set as 

P({oj}, t) = c(t) + al(t)~ 1 + a2(t)~2 + ..... 
(3.18) 

+ al2(t)~l~ 2 + al3(t)~l~ 3 + ... + a123(t)ol~2~ 3 + ... 

Clearly, the expansion coefficients ai~'''k(t)J are nothing but corre- 

lation functions 2-N<oio j ... ~k>t for the N-spin system. Thus, the 

master equation (3.1) for P({oj}, t) is easily transformed into the 

following equations of motion for correlation functions: 

~tA(t) = ~ A(t) (3.19) 

where 7~ is a linear operator corresponding to~, and A(t) denotes a 

2N-dimensional~" vector whose components are given by (c(t),al(t),a2(t~ : 

A(t) = (c(t), al(t), a2(t) ..... )% (3.20) 

In order to renormalize irrelevant degrees of freedom, we divide the 

components of the vector A(t) into two parts by rearranging as 

A(t) = (Al(t), A2(t))'~ (3.21) 

Here A2(t) is a subvector whose components are irrelevant correlation 

functions containing spin variables inside each cell to be eliminated 

and Al(t) is the remaining subvector. The real-space RGA requires to 

eliminate the part A2(t) in (3.19). This procedure yields the following 

type of equations of motion 

l(t) = iAl(t) or d-~A (t') = (t'), (3.22) 

after appropriate coarse graining of time or Markoffian approximation. 

The requirement that (3.22) should take the same form as the original 

one (3.19) gives again the desired scale transformation of time 

t'/t = L -z (3.23) 
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There are several methods to eliminate A2(t) explicitly, as will be 

shown later. 

If we are satisfied with a very intuitive RG scheme, the formulation 

(3.12) may also lead to the idea that the renormalization of time could 

be obtained approximately by a certain transformation of~ into that 

of block spins, namely by the evaluation of the lowest eigenvalue of 

the transformed ~ !- for block spins, as was discussed by Kinze130) and 

by Achiam and Kosterlitz. 33) 

4. Dynamic real-space renormalization for the one-dimensional kinetic 

Ising model. 

In order to explain the main idea presented in the preceding section 

we discuss here a simple example, namely the exactly soluble linear 

kinetic Ising model I)'2)'40)~42) with nearest neighbor interaction. 

Achiam, 31) Deker, 37) Suzuki et al. 35) have studied independently this 

one-dimensional case. The Hamiltonian of this Ising chain is given by 

= - J oiOi+l . (4.1) 
1 

The transition probability for the corresponding kinetic Ising chain 

takes the form I)'2) 

1 
Wj(oj) = -~-e{l - Yoj(oj-I + ~j+l )} (4.2) 

with 

Y = %tanh(2K) and K = J/kBT (4.3) 

The equations of motion corresponding to (3.19) are given by 

d 
~mj (t) = -mj (t) + y(mj_l(t) + mj+l(t)) (4.4) 

with mj (t) = <oj (t)>, where we have put ~ = 1 for simplicity. First 

note that we have 

mj = Y(mj_ 1 + mj+ I) (4.5) 

in equilibrium. This is a special example of the following well-known 

relation among correlation functions: 

<Oj>eq : <tanh(K .I oi ) >eq 
<i,3 > 

or more generally 43) 

(4.6) 

<{f}~j>eq = <{f}tanh(K [ oj)>eq (4.7) 

where {f} denotes an arbitrary function of a~ s at sites other than the 
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j-th. Then one might consider the following adiabatic approximation 

mj+l(t) = T(mj(t) + mj+2(t)) (4.8) 

to be useful to perform the real-space renormalization group calcu- 

lation. However, this approximation is too crude to give the correct 

critical value z = 2 in one dimension. In fact, the above rough ap- 

proximation (4.8) leads to the following renormalized equation of motion 

( t )  = (1 - 23 ̀2 . ( t )  + T '  (mj_ 2 ( t )  + ( t ) )  , ( 4 . 9 )  

for the scaling factor X = 2, where 

~' = y2/(1 - 2~ 2) (4.10) 

This renormalization transformation is equivalent to tanhK' = tanh2K. 

Even this rough dynamical RG transformation yields correctly the static 

one discussed by Nelson and F i s h e r ,  44) M i g d a 1 4 5 )  a n d  K a d a n o f f ,  46) a n d  

the fixed point is given by Y* = 1/2. The time scale corresponding to 

the general formulation (3.23) is obtained from (4.9) as 

t'/t = 1 - 2(T*) 2 - 1 _ x-z 2-z 2 = (4.11) 

at the fixed point y* = 1/2. This gives an incorrect value z = i. 

This indicates that the above adiabatic approximation (4.8) is not good 

for the present dynamic RG approach. 

In order to overcome this inconsistency, we have to take into account 

correctly the feed-back effect of time change of neighboring spins. 

For this purpose we eliminate m j + l ( t )  a n d  m j _ l ( t )  by  m u l t i p l y i n g  35) 

the both sides of (4.4) by the operator (d/dt+l) and by using the equa- 

tions of motion for mi+l(t) and mi_l(t) similar to (4.4). Thus, we 

arrive at 

(i + ~t)2mj(t) = T2(2mj(t) + mj_2(t) + mj+2(t)). (4.12) 

That is, 

~mjd (t) = ~(i - 2~ 2) {-mj (t) + ~' (mj_ 2 (t) + mj+ 2 (t) } + -~-i ~.d2 (t) 
dt 2 3 

(4.13) 

with T' defined by (4.10). If we neglect the term of higher derivative 

in (4.13), which corresponds to the coarse-graining of time, then we 

obtain the equation of motion of the same form as (4.4): 

d 
~-~mj(t') =-mj(t') + T' (mj_2(t') + mj+ 2 (t')) (4.14) 

with 
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1 2 
t' = -~-(i - 2y )t . (4.15) 

Equivalently, this result can also be obtained 31)'35)'37) by the Laplace 

transform of (4.4) as 

(i + s) mj[s] = y(mj_l[S] + mj+l[S]) (4.16) 

Thus the time scale is given by 

t'/t = l-z 2-z _ 1 2 2-2 = 2 (i - 2(Y*) ) = . (4.17) 

Consequently we obtain 31)'35)'37) the correct value z = 2. 

This treatment can be easily extended to a general case of an arbitrary 

decimation factor i. The Laplace transformation method (4.16) is the 

most convenient for this general case. Thus, we obtain a set of equa- 

tions of motion 

(I + s)m k = Y(mk_ 1 + mk+ I) (4.18) 

for k = -I + i, -I + 2, ..., 0, i, ..., I - i. By eliminating m_l+l , 

... m_l, m I, ..., ml_ 1 algebraicly and neglecting terms of higher order 

in s as before we obtain 35) 

d 
~-~,m0(t') = -m0(t') + y' (m_l + ml) (4.19) 

where 

y, = 2Yl(Dl_ l _ 2y2Dl_2)-i = 2yl([{l + I)-i (4.20) 

and 

t' _ DI-I - 2y2DI-2 = (BI + al)(~ - ~) (4.21) 

t + ' - 2y2D~_2 I (E l I) 
DI- 1 DI- 1 

Here ~ and ~ are two roots of the equation that t 2 - t + y2 = 0 and 

D I is a determinant of a I x I matrix corresponding to the simultaneous 

equation (4.18) and it is given explicitly by 

DI : (BI+I _ I+i)/(~ _ ~). (4.22) 

It is easily shown that the recursion relation (4.20) is equivalent to 
. . . 44)~46) 

tanhK' = '~tanhK11 This is the well-known static recursion re±azlon 

in one dimension for a general decimation factor I. The fixed point K* 
1 

is given by K* = ~, i.e., ~ = 8 = -~-. Consequently, the time scaling 

exponent z is calculated as 

z = - lira Zn(t'/t) _ lira in(t'/t) _ 2 . (4.23) 
~nl in l 

K÷K* 8+a=i/2 

That is, we obtain the correct value z -- 2 for an arbitrary scaling 

factor I in one dimension, as it should be. 
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The calculation in the present section will be useful as a preparation 

of the extended Migdal-Kadanoff approximation to be discussed in the 

succeeding section. 

5. Dynamic Migdal-Kadanoff approximation 

In this section we extend the idea by Migdal and Kadanoff for the 

static real-space RG to dynamical critical phenomena. This has been 

tried already by Suzuki et al.~ 5) Chui et al. 36) and also quite recently 

by Achiam. 32) Here we review first the essential scheme by Suzuki et 

al. 35) because it is very simple. 

The main procedures in our dynamic Migdal approximation (D~iA) are the 

following two steps: 

(i) Potential moving; we assume that all spins in each cell with length 

I behave effectively quite similarly to each other even in critical 

dynamics, if h is much less than the correlation length ~(T). Thus, 

the lattice of our system is transformed into another lattice with l 

times lattice-spacing and with the interaction hK, as shown in Fig. 2. 

K 

0 

Fig.2a Fig.2b 

Fig. 2. Potential moving; (a) the original lattice with the inter- 
action K, (b) the transformed lattice with h times lattice- 
spacing and with the interaction IK. 

(ii) Dynamic decimation; the second step is to eliminate dynamically 

irrelevant spin variables inside each cell such as al(t), o2(t), ... 

ah_l(t), as shown in Fig. 3. To perform this procedure we eliminate 
1 

first spin variables o~(t) .... Oh_l(t), etc. using equations of motion. 

From this one-directional dynamic decimation the equation of the aver- 

age of o~(t) is expressed only by o0(t) and 0k(t). On the other hand, 

the equation of motion for g0(t) is coupled with the neighboring four 
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4 
~9 2 d=l regime 

Fig. 3. 

Fig. 3(a) Fig. 3(b) 

I I  l, 

II II 
II II 
II II 

' ' ' ' ' I~ ' ' 0  '' '~)X 

II I II II II 
II II 
II II 

Fig. 3(c) 

Dynamic decimation; (a) a lattice after the potential 
moving, (b) an intermediate state in which °2, "'" ~I-~ 
are decimated dynamically, (c) the original moment m 0 is 
coupled with the new neighboring moments after elimination 
of the old ones. 

spin variables ~t~ ~t~ ~t~ and ~t~ Therefore b~ substitut 
ing the expressions for these spin variables obtained by the above 

dynamic decimation into the equation of motion for the central spin 

o0(t), we arrive finally at the renormalized kinetic Ising model with 

a new lattice-spacing (~I) and with the renormalized coupling constant 

K' and time vairable t': 

K' = }~I(K) and t' = ~l(t) (5.1) 
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As discussed generally in §2 the critical temperature T = T*, static 
c 

critical exponent w and dynamic critical exponent z can be easily cal- 

culated from the above recursion formulae (5~i). 

Now the kinetic Ising model is described by the master equation (3.1) 

temporal evolution operator ~ defined by with the 

~ P(~) = -~wj (~j)P(~) + ~wj (-~j)P( .... -~j .... ) , (5.2) 

and with the transition probability (3.16). In particular, for the 

two-dimensional~ ~square lattice, the factor tanh(K [.. o~)j in (3.16) 

takes the form 51'7j <it3> 

4 4 4 terms 

tanh(Kj~l~j) = a(K)j[__l~j + b(K) n.n.[ ai~j~k (5.3) 

where 

1 1 
a(K) = ~- tanh(4K) + ~- tanh (2K) 

and 

1 1 
b(K) = -~- tanh(4K) - ~- tanh(2K). (5.4) 

According to the dynamic Migdal RG procedure proposed above, we can 

proceed explicitly in the two-dimensional kinetic Ising model as follows. 

a) Decimation in one direction. From the master equation (3.1) with 

the one-dimensional transition probability 

1 
Wj (~j = +{i - XI~ j (~j-i + ~j+l ) }; X1 = -2- tanh(21K) (5.5) 

The factor I in (5.5) has come from the potential moving as explained 

in Fig. 3. As discussed in §4, the dynamic decimation of spins in one 

direction can be performed easily by the Laplace transformation method. 

equation of motion of the spin ~ in Fig. 3(a) is thus obtained in The 

the form 35) 

1 (s)m 0 + I-i 1 Dl_l(s)m I = ¥IDI_2 X 1 m I (5.6) 

1 1 
where m I = <oi>, 

Dl(s) = {B(s) I+I - a(s)l+l}/{B(s) - ~(s) } (5.7) 

B(s) are two roots of the equation that t 2 - (l+s)t + X~ and ~(s) and 

= 0. Similar expressions for m~ (i=2,3,4) in Fig. 3(a) are obtained. 

b) Renormalized equation of motion: Now we substitute these expres- 

sions for {mk} into the equation of motion for the central spin m0: 
4 4 

(i + s)m 0 = a(IK) [ i i i~l ml + b(IK) ~ t I (5.8) 
i=l 
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wher e tli ~ <all-lololi ~+I> with the module i + 4 H ~. This procedure is 

shown as the step (b) ÷ (c) in Fig. 3. Thus we arrive at the renor- 

malized equation of motion of the form 

4 4 
i 

(i + s')m 0 = a(K').[ m~ + b(K') [ t I , (5.9) 
i=± i=l 

up to the order s where 

DI_ 1 + D~_ 1 -4alTID~_2 
s I = s , 

DX- 1 - 4 a t T t D t -  2 

a ( K ' )  = aXT x Z(Dx_ 1 - 4axTxDx_ 2) , 

and 

b(K') = DI_Ibl/(DI_ 1 - 4alyiDl_ 2) 

(5.10) 

(5.11) 

(5.12) 

a I E a(lK), b I 5 b(IK), D1 = DI(0), D~ = D~(0) (5.13) 

The recursion equation (5.11) determines the fixed point K* as 

a(K*) = a(XK*){~(21K*)}I-I 

D~_ 1 - 4a(IK*)T(21K*)D~_ 2 

* being the value of D 1 at the fixed point. with D 1 

YT = i/~ is determined as 

YT ,,da(K) I 
1 = [~K ~l(a(K))/d--dK--JK=K * (5.15) 

From the recursion relation (5.10) the dynamic critical exponent z is 

determined as 

z = [in(s'/s)]K=K,/inl. (5.16) 

Explicit calculations give the following critical values 

-i K* = 0.235, z = 1.85, ~ = 1.31 for I = 2, 

K* = 0.187, z = 1.82, -i = i.24 for I = 3. (5.17) 

It is quite interesting to take 35) here the limit I + 1 of the infini- 

tesimal RG through the analytic continuation of the above results for 

a general integer I. For this purpose we study the small deviations 

of ~I(K) and ~l(t) for I = 1 + 61 as 

~l(a(K)) = a(K) + L(K) dI + (5.18) 0[(61) 2 ] 

and 

(5.14) 

The thermal exponent 

71(t)/t = 1 + M(K) 61 + 0[(61) 2 ] 

The fixed point in this limit is given by L(K*) = 0 which gives 

(5.19) 
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K* = 0.325. The dynamic critical exponent z for this limit I ÷ 1 is 

determined as 

-z = (i + 61) -z = 1 - z61 + ... = 1 + M(K*)61 + ... (5.20) 

and consequently 

z = -M(K*) = 1.96 (5.21) 

The thermal exponent YT = i/w is given by 

YT = (~KL(K)/~ a(K))K=K* = 1.51. (5.21) 

For the explicit expressions of L(K) and M(K), see ref. 35. The value 

z = 1.96 of the dynamical critical exponent z agrees very well with 

that obtained in a high temperature expansion method by Yahata and 

Suzuki, 6) who predicted z = 2.0 ± 0.05 in the present two-dimensional 

kinetic Ising model. The value of static exponent is not so good, 

compared with the exact value ~ = i. It should be noted that our 

results for static physical quantities such as K* and w do not agree 

with those obtained by Migdal and Kadanoff. That is, our method is not 

a simple straightforward extension of the MK approximation to critical 

dynamics but it has some new aspects. In fact, we have used only 

Migdal's fundamental idea i.e., potential moving, and the remaining 

formulation of our theory is quite dynamical. Therefore, it is not 

necessary that our static results should agree with those of the MK 

theory. 

If we consider the triplet cluster term ~t~ explicitly in the above 

arguments on the invariance of equations of ~ motion then we may obtai~ 5) 

the value of the magnetic field exponent 6. 

Recently, Chui, Forgacs and Frisch 36) and Achiam 32) have studied the 

same problem in quite similar methods. However, their results are 

different from ours. Chui et al. have obtained z = 1.85 in their first 

version and z = 2.064 in their revised theory. 47) Achiam has obtained 

z = 2.2. It will be interesting to study which is more accurate. 

However, it is rather difficult at present. 

6. Other methods 

(i) Kinzel's method30) : He has formulated first a very intuitive ad 

hoc RG scheme that is, he has assumed that the transition probability 

wj (~j) = ~(1 - ~j tanh~Ej) (6.1) 

with the local energy E. at the j-th site should be transformed into 
3 
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the same form as (6.1) after renormalization, with a new relaxation 

time T'. This T' was determined as the slowest relaxation time of the 

temporal evolution operator of block spins. For the triangular lattice 

Kinzel obtained 

T'/T = (i - tanh2K) -I - 1 (e4K +i) (6 2) 
2 " 

Then the dynamic critical exponent z is obtained as 

z = [£n{ (exp(4K*) + i)/2~]/£n/~ = 1.776. (6.3) 

(ii) Achiam-Kosterlitz method~ 3) In (3.13) the function ~(~, t) may 

be parametrized in the form 

~(o, t) = 1 + hl(t)Z~ i + h3(t)2~ioj~ k + ... ~ 1 + O(o)-~(t). 

(6.4) 

Equation (3.13) can be written as 

d ~(o).~(t) = - ~ (~)O(o) "~(t) (6.5) 
dt 

This is transformed under the RG to the following equation 

d ~/ 
d--t ~(~)'A~(t) =- ~ (~)~(~)-~(t) (6.6) 

for renormalized spins ~ where A and ~ are matrices defined by the RG 

transformation. Achiam and Kosterlitz have calculated the dynamic 

critical exponent z through the plausible relation 

L z = /max/~max (6.7) 

for the scaling factor L where Ima x and emax are the largest eigen- 

values of the matrices A and ~, respectively. In actual calculations 

they have restricted the Hilbert space of O(a), for example, into O(~) 

= Zoi" Thus they have obtained z = 2.19. This theory has double 

approximations. That is, the relation (6.7) is not justified micro- 

scopically and the restriction of o~ (~, t) to the above simple form 
%J 

seems to be very severe. 

(iii) Dynamic Niemeijer-van Leeuwen approach~ 5) As a simple example 

to illustrate our main idea 35) we consider cells shown in Fig. 4. 

Following Niemeijer and van Leeuwen 48) we assign a new set of spin 

' o~ ' o~, etc. to each cell and find approximately variables o a, , oy, 

equations of motion for these cell variables by eliminating dynamically 

old spin variables in each cell by the help of the Markoffian approxi- 

mation. The idea is quite analogous to those by Achiam and Kosterlitz 33) 

and by Mazenko, Nolan and Valls. 34) The principle of our method is 

simple but explicit calculations are very tedious. We eliminate spins 
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in a cell by the help of equations of motion as in §3 and §4, in con- 

trast to those by Achiam and Kosterlitz and by Mazenko et al. For 

details see ref. 35. The results thus obtained are not conclusive at 

present for the above small cell division. 

"i~'> / • 

/ " 

Fig. 4 
Division of the two-dimensional 
square lattice into cells, and 
renormalized lattice points a, 
B, Y, 6 and e. 

(iv) Path integral method: 49)'50) Quite recently Ma 49) formulated a 

phenomenological theory of dynamic RG by introducing a discrete time 

sequence of probability distributions for configurations in the momen- 

tum space. He has obtained the e-expansion of z as z = 2 + ~ up to the 

first order in c near one dimension, e = d - i. Shiwa 38) has extended 

Ma's method to the real-space RG and obtained z = 2.09 ± 0.04 by apply- 

ing also the variational method to a triangular lattice. 

The present author 50) has also formulated independently a path integral 

approach to the real space-time RG. The path integral method has been 

used successfully in many stochastic problems. 51)~53) 

In order to explain our main idea we discuss first the linear Brownian 

motion (or Gaussian process) of the following simplest form 

d 
~x : Yx + ~ (t) ; y ~ 0 (6.8) 

where ~(t) is a Gaussian white noise satisfying the relation 

<~(t) n(t')> = 2e6(t - t') (6.9) 

As in Ma's argument we divide the time into discrete steps :t = nat 

(n=0,1,2 .... ) and we specify x at the "time" n by x n. Then the proba- 

bility function P(Xl, x 2 ...) z P({Xn} ) is expressed by 

P({Xn}) ~ exp[-[(Xn+ l- x n - xAtXn)2/(2eAt)] (6.10) 
n 

This is zero-dimensional in real space and one-dimensional in time. 

Although this is an exactly soluble trivial example it is very instruc- 

tive. We perform here the following real-time RG scheme, namely we 
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integrate P({Xn}) over variables {X2n} as 

IHdx~ P ) P' ({xA}) exp[ [- ' - (I+YAt)2xA)2/(2~At')] 
n zn ({Xn} ~ ~ n (Xn+l 

(6.ii) 

where 

x' = and At' = {i + (l+YAt)2}At (6 12) n X2n+l " " 

For small At the renormalized At' is reduced to At' = 2At = L'At with 

L' = 2, as it should be. 

For a general case we may write the nonlinear Langevin equation as 

___d ~dt (r, t) = V 2~(r, t) + f(~(r, t)) + U (m, t) (6.13) 

The path integral corresponding to the above stochastic process may be 

essentially e x p r e s s e d  52)%54) by 

rff(r, t) --~(~) t 
P(~(r), t, ~0<~), to> = |D~(~, y,exp[-~e ~dY~] (6.14, 

J](r,to)=~(~) "t O 
where 

~ = (~ ( r ,  t)- V2~(~, t)- f (~ (~ ,  t))) 2 (6.15) 
The discrete version of this path integral will be clear. The scale trans- 

formation of the cell sizes Ar and At in real space and time will be 

obtained as 

Ar ÷ (At)' = L(Ar), At ÷ (At)' = L' (At) , (6.16) 

after appropriate real-space RG, and the dyanmic critical exponent z 

can be calculated through the relation 

z = ~n L'/£n L (6.17) 

However, actual calculations are very complicated and they are still in 

progress. The above formulation will be also useful for Monte Carlo 

simulation. 

7. Related problems in future and discussion 

(i) Improved systematic real-space dynamic RG: As we have shown in this 

text, all the methods proposed up to now are far from a desired system- 

atic approach. For example, the Migdal approximation extended to crit- 

ical dynamics is very simple and intuitive, but it is quite difficult 

to improve this approximation systematically. The situation is almost 

the same in other methods discussed in this article. 

(ii) Critical slowing down near phase transitions far from equilibrium. 
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In section i, we have formulated the ordinary critical slowing down in 

the linear response theory 4) , so-called linear critical slowing down, 

and also the nonlinear critical slowing down. 7) The critical slowing 

down in the first category is generally expected to appear even near 

phase transitions far from equilibrium, quite analogously to that 

in equilibrium. 

In many cases phenomena far from equilibrium are described by the non- 

linear Langevin equation (6.13) or by the Fokker-Planck equation. If 

we consider the time dependent "order parameter" x(t) describing bifur- 

cation phenomena of the system then the correlation time of the cor- 

relation function <x(t' + t)x(t')> will be anomalously enhanced near 

the transition point of the second order. This situation is immediately 

realized in a linear Langevin equation of the form ~(t) = -Yx + ~(t). 

The relaxation time is proportional to -i where y = 0 is a typical 

bifurcation point. To study more general nonlinear cases will be 

a problem of the future. 

This kind of critical slowing down has been also found 25)'55) in tran- 

sient phenomena near the instability point. 
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onto a corresponding operator for the associated coarse-gralned lattice. 

We discuss how to set up this problem of mapping operators onto operators. For an arbi- 
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which are completely Markovian. 

We show how these ideas can be applied to the two-dimenslonal kinetic Islng model. 
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I. Introduction 

In this paper, we discuss a method for systematically implementing a real space dynamic 

renormallzatlon group (RSDRG) transformation. This method wil l be applied to the problem of 

treating the critical dynamics of kinetic Ising models. We believe, however, that many of the 

ideas we develop are more general and could have applications in a number of other dynamical 

problems. The work reported here was carried out in collaboration with Dr. Michael J. Nolan 
1) and Professor Orlol T. Vails. A brief report of our work has already appeared ( and more detailed 

papers wil l appear elsewhere. (2) 

The continuum renormalizatlon group method due to Wilson(3)and the mode coupling theory 

due to Fixman, (4)Kawasaki(5)and others(6)have been successfully married into a dynamic renor- 

mallzatlon group theory that works quite well to explain dynamic phenomena in a variety of sys- 

tems. Many of these successes are discussed in the recent review by Hohenberg and Ha lperi~. (7) 

This method is designed to work in the critical scaling region and near the upper critical dlmen- 

slonallty where fluctuations are "weak." In the scaling region one can invoke the universality 

hypothesis to justify using the most convenient calculational model and ignore all microscopic 

details. Within these limitations the theory is very powerful. 

While the continuum approach has been very successful in certain circumstances the l imi- 

tations can be severe. Since one ignores local details from the very beginning of the theory it 

is only useful for determining asymptotic properties. Thus, while it wil l  give you the critical 

exponents, it wil l  not tell you the value of the transition temperature or how one approaches 

asymptopla. Similarly, the continuum formulation essentially assumes there is a second order 

phase transition and only works near such a transition. It is not useful for looking at global pro- 

pertles over the entire thermodynamic plane and can not be used to systematically investigate 

first order phase transitions. 

Practically speaking, we only know how to treat the model field theories studied in the 

continuum theories within the framework of perturbation theory where fluctuations are treated as 

small. Thus, we must work "near" 4 or 6 dimensions or use sophisticated (8)resummation techniques. 

Clearly these techniques are not the most appropriate for treating two-dlmensional systems with 

strong fluctuations. 

Suppose we are interested in the dynamics of a lattice model in two dimension. We may 

be interested in nonunlversal quantities, llke the transition temperature, Tc, and in global ther- 

modynamlc questlons. (9) In this case, the continuum RG is not well suited to the problem. The 

real space renormaHzatlon group (RSRG) method is a better candidate for treating this situation. 

The RSRG method, which takes the original block spin picture of Kadanoff(10)very seriously, 
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was first successfully implemented by Nieimeier and van Leeuwen(11)(NvL) in case of the two- 

dimensional Ising model. This approach allows for a determination of non-universal quantities 

(like the transition temperature), works in lower dimensions and seems generally complementary 

to the continuum RG. It has seemed highly desirable since the work of NvL to extend their ideas 

to dynamical problems. Progress has been very slow. In this paper, we want to point out the 

dif f icult ies hindering progress and, we believe, the resolution of these di f f icul t ies. 

In the next section we introduce the general properties of kinetic Ising models we wi l l  

need in our discussion. In the third section we sketch the basic ideas in the static RSRG neces- 

sary for our discussion of dynamics. In section IV, we introduce our RSDRG transformation with 

special attention to the role of non-Markovian effects in the development. The implementation 

of these formal ideas to the kinetic Islng model on a two-dimensional triangular lattice w i l l  be 

discussed in section V.  We conclude the paper in section VI with a few comments. 
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II. Kinetic Ising Models 

Kinetic Ising models (12' 13)are intermediate between completely microscopic and macro- 

scopic dynamical models. On the one hand the static or equil ibrium behavior is controlled by a 

microscopic Ising Hamiltonian. On the other hand, one can not define a Poisson bracket for a 

system containing only Ising spins, and therefore one does not have a microscopic dynamics gen- 

erated by the Hamiltonian. Alternately, we must ~ntroduce a stochastic time evolution operator. 

It is conventional in motivating the dynamic evolution of a set of Islng spins to picture the system 

as being ~n contact with a heat reservoir. The interactions with the heat reservoir provide the 

dynamics. Specif ical ly, let us consider a system of N Ising spins (in any dimension) interacting 

with a heat bath, and let i be an index which numbers the spins and let {~ a~} stand for a given 

spin configuration ~c~] - ~ a 1. . . a i . . . c~ N ~. The equil ibrium probabil i ty distribution is 

given by 

and H[ or] 

write 

PLy'] : 

is the Ising Hamiltonian (multiplied by -p ), and 

N 

2. 

(2.1) 

Z is the partition function. We 

(2.2) 

where K is the coupling constant (K : +  P J where J is the exchange interaction), and the b 

sum is over basis vectors connecting a spin at site i with its nearest neighbors. The equil ibrium 

spin-spin time correlation function can be defined in this case as 

where Da is an operator similar to a Liouvi l le operator in a fu l ly  microscopic theory. In the 

case of kinetic Islng models D'a generates a stochastic dynamics (includes damping effects) and 

is a pseudo-Liouville operator. In the context of models we study here, we wi l l  refer to Dcr as 

a spin-f l ip operator (SFO). An operator in this case is a matrix which rotates one spin configur- 

ation ~ cy' ~ into another spin configuration ~ c~ ~} : 

The adjolnt operator D a is defined by 
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Dbi '] - . 
(2.5) 

We wi l l  went to demand that 9 0 • or equivalently D a • satisfy two basic properties. First 

we require that the equilibrium probabil ity distribution is stationary under time translations, 

This requires that 

or 

b f . , w ]  = (2.7) 

We refer to Eq. (2.7) as the detailed balance condit ion. A second symmetry condition follows 

from demanding that a time correlation functions of interest satisfy 

CAB(t)  = CBA(t) . (2.8) 

This condition is satisfied in a fully-microscoplc theory i f  A and B have the same signature 

under time reversal invariance. We would like our stochastic dynamical model to satisfy this 

symmetry constraint. It is easy to see that this constraint wi l l  be satisfied i f  the SFO D a satis- 

fies the symmetry condition 

Dbl~'] Pb'] = bb'l~] P h i  (2.9) 

Note that Eqs. (2.7)and (2.9) give us the useful identity for any f (a ) :  

Z {L,']: PLy'] 

Together the detailed balance condition (2,7) and the symmetry relation (2°9) constrain the 

possible operators D o. signif icantly. There is• however• stil l a greet deal of latitude in choosing 

the appropriate operators and operationally one is guided by argreements of locali ty and simplicity, 

In this paper• we wi l l  focus on a particular class of operators satisfying (2.16) and (2.19). We 

call this class of operators "spln-f l ip operators " because they have the property that they are a 

sum of terms of the form: 
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where 

Al: h, ;~...j i,~'] 

(2.11} 

is the operator that sets a = a' on a l l  lat t ice sites except i I , i 2 , . . . ,  i n . Thus, Dcr 

w i l l  "operate" on only a restricted set of n spins. Dc~ is diagonal as far as the other N - n 

spins are concerned. There are other models one could consider which do not have this property. 

The simplest SFO involves operating on one spin and is of the form 

At;;] 

where 0, -1 is some characteristic spin- f l lp  t ime, and 0, W i [ a ] has the physical interpretation 

of the probabi l i ty per unit  time that the i th spin w i l l  f l ip from a i to -or i . We have yet to 

fu l ly  specify W i [ cr ] . From detai led balance (2.7) and the symmetry condit ion (2.9) we have 

I i  v' p t , , : l  = o (2.13, 
{~'1; 

and 

A~; ] 

- A 'a r '  pEr]  - -  . , ~ r , , , ~ ; L r ]  ~ ; i  
l 

(2.14) 

Both equations are satif ied as long as W i [cr] P [a ]  

simplest choice for W i [a ]  is 

where 

is independent of the spin at site i .  The 

(2.15) 

gives the interaction energy of the spin at site i with its nearest neighbors. 

We wi l l  be interested in expressions for D[  o i a '  ] more general than (2.12). The rea- 

son is that we expect that in a RG transformation starting with a given operator Da we may, at 
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a given order in perturbation theory, generate new terms. If we want the procedure to "close" 

we must start with a general enough operator D o.. A general SFO can be written in the form 

A ~  ~ L~'I 
I 

"~ (2.17) 

' , 

where we have included up to three spln terms. The W i i" " " [a ]  in Eq. (2.17) are defined as 

follows: let Hi i  k" • • be the sum of al l  terms in the Hamiltonian which involve a i o.j ak. • • 

for example: 

H; = r: ~; tq'Zl 

or• i f  o.i aj are neighboring spins 

(2.18) 

H ;~- ~E~tq'3 + ~E, itT'~- K~ 12.19) 
(the lost term ovoids double counting). Then we define: 

W~ r.~:l -~ p_ ~N+a''" 
(2.20) 

Final ly,  the functions V [ i j . . " ] (a ' )  are arbitrary functions of o'  • except that they must be 

independent of the set of spins a i ' o.j' . . . .  The V's have dimensions of an inverse timer 

whereas we take the W's to be dimensionless. 

It is easy to show that (2.17) satisfies the detail balance condition (2.7) and the symmetry 

condition (2.9). The key point is that V[mJ j r .  . . . ]Wi  j . . . [  a] P[ a] does not depend on the 

spins a i crj . . . .  Direct summation over a'r.  r - -  - - o f  D[a ] 0 " ]  P [ a ' ]  gives zero since there wi l l  

always be a term llnear in ~i' " Since V ~ J ' ' ' ] / ~ l o J ~ ' ~ i j . . . ( a  a . .  ) P ( o ) i s s y m m e t r i c  

with respect to the interchange o . ~ a '  , i t  follows that the symmetry relation (2.9) is satisfied 

by (2.17). For a given set of functions [W.h (a) . . . .  r W: j(a ) . . . .  i} one can deve lop a systematic 

method for extracting the coefficients v [ i J [ o . ]  • V i i ,  j l [  a] etc. from a given operator 
- -1  • 

D [a l c ' ]  . The details of this procedure wi l l  be described elsewhere. 
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I I I .  The Real Space Renormalizatlon Group 

In this section, we wi l l  review some well known(11)properties of the RSRG that wi l l  be 

needed in our dynamical treatment. Let us consider a set of Ising spin variables [ c~ } on a latt ice. 

The RG transformation function T [ta J a]  maps the set [ a ] onto a new set of spins [ t~ ] 

located on a lattice geometrically similar to the ini t ial  one, but having a larger lattice constant. 

If the ini t ial  Hamiltonlan is deslgnated by HI a] ,  one deflnes the Hamiltonian H[I~] on the 

new #- lat t ice by the relation 

The demand that the partition function be invariant under this transformation 

~.~'~ (3.2) 

requires that the transformation function satisfy the normalization condition 

"21 = 

With the exception of this normalization condition there is no restriction on the choice of T[ ~t a] , 

Let us consider a system of Islng spins on a two dimensional triangular latt ice. This system is 

discussed extensively in Ref. 11 and is the system we concentrate on in this paper. Let us divide 

the lattice into triangular cells, drawn so as to preserve the symmetry of the latt ice. 
c.e, llS 

Figure 1. A two-dimensional triangular lattice divided into three-spln^labeled by a cell index i 

and a set_+ of -~basis-+ z ~  

vectore a 1 , a 2, a 3 • 
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Each cell w i l l  correspond to a new spin, # .  We wi l l  use an index i to designate each cell 

(and hence each #) . The three a spins in cell i are designated . . . . .  a,,a~.: ,c/ i ,a2 and al ;~3 ' 

where the vectors a l l  a2, and a 3 are defined in Fig. 1. Following NvL ' l l )we  wi l l  consider all 

intracell interactions to be of zeroth order and all nearest neighbor intercell couplings to be of 

first order in e ( c to be set equal to one at the end of the calculat ion). 

A widely studied class of RG transformation functions corresponds to assuming that T can 

be written as a product over cells, i . e . !  

: .I]" Ti~m "] . (3.4) 
i 

The index o signifies that T does not include any intercell couplings. The most general form 

that we can write down for T i [~  i a ] t  depending only on the spin ~i  and the three cy-splns in 

the i th cel l ,  is 

! ~ ,  (V))  (3..5) = I + # :  

which satisfies the nomalization condition 

T:  = z (3.6) 

It ls desirable, in order to preserve the symmetry H [ - o ]  = H [ o ] ,  tochoose T i [ # l o  "] tobe 

even under the f l ip of al l  the b[ and a spins in a cel l .  Thus we want Mi(o" ) to be an odd func- 

tion of the o spins in the cell i . We wi l l  choose the q0i(a ) to satisfy the normalization 

condit ion. 

where the average is defined by 

where Po[a] is the equil ibrium probabil ity destribution corresponding to uncoupled cells. If we 

further demand that ~0 i be symmetric function of the three spins in the cell then it can be wr i t -  

ten in the form 

= N(  

where N and f are constants related through the normalization condition (3.7)r c:r T is the 
I 

total spin for the i th cell~ 
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and a c is the product of the three spins in the i th cel l ,  

With this choice for T o , one can calculate H [#]  as a cumulant expansion in powers of the 

infercell coupling ¢ ° The result to First order in ~ is that H [~J] is of the same form as 

H i# ]  with only nearest neighbor couplings and the new coupling constant is related to the old 

by 

K I = (3.12  

where 

Since we assume cpl (c~) is symmetric in the three spins in cell i ,  v w i l l  not depend on the 

particular basis vector a. In a second order calculat ion, one generates couplings between 

second and third nearest neighbors and the corresponding recurslon relations involve three para- 

meters. One appealing choice for cpi (a) is given by the "majority rule" due to NvL where 

and corresponds to N = 1/2 and f =  I in Eq. (3.9). 

(3.14) 
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IV. The Rea! Space Dynamic Renormallzation Group 

In this section, we wi l l  develop our scheme for implementing the RG for dynamics in 

position space. 

A. Basic RSRG Transformation for the Time-Evolution Operator. 

In the dynamical problems of interest the system is specified by the Hamiltonian H[~] 

and SFO D [a  I a ' ] .  If we wanttoapply RG ideas to this problem~ we want to design transfor- 

mations which map the old Hamiltonlan Hick] and SFO D [a l a '  ] onto their counterparts 

H [k]  and D [~1~ ' ]  defined on the ~- Iat t lce.  We "understand" the mapping H[a] -~ H [I~]. 

The problem is with the mapping Dcr -~Dt~. The dif f iculty is that we now have to map an oper- 

ator onto an operator. 

It is useful• in developing the appropriate transformation• to introduce the time evolution 

matrix 

p[ :l 
where 

Ti" 
i 

is the matrix setting ~ : a '  

(4.2) 

on al l  lattice sites. From this quantity we can construct any time 

correlation function of the form (c: i aj . . .c :  k ~ a t a m  . o.C~ n >. We see~ for example, that 

the spin-spin correlation function is given by 

:2 PL<I • (4.3) 

Remembering that the RG transformation for the probability distribution is given by 

and noticing that G t [o" Io" ] is a matrix depending on two sets of spins, i t  is natural to assume 

that the new time evolution matrix for the w-latt lce is defined by 

(4 .4 )  

• (4 .5 )  
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In this case there are two constraints on the mapping functions T. The first constraint is the same 

as in the static case and given by Eq. (3.3). The second constraint follows from requiring that 

the zero time form of G t [o  [ a' ] 

GoD'I~".] = ~,,,-, pb - l  (4.6) 

be preserved by the RG transformation• 

I Co0[p ,,,.] = % - 
Pt, , , l  . (4.7) 

Notice that together Eqs. (3.3) and (4.7) imply that Eq. (4.4) still holds. This definition of 

G t [pJ la'] is a physically sensible dynamical generalization of the static RSRG procedure. To 

see this, consider the spin-spin correlation function generated by Gt[ ~ l~ ' ] :  

* = .  

If the mapping function T is of the product form given by Eq. (3.4) then 

~ (4.9) 

and 

! 

(4.10) 

where we have defined 

f v,~ (4.11) 

Cii ( t )  is• as desired• the time correlation for a set of coarse grained spin variables. This means 

that we must choose cpi to represent the effective spin for a cell. Physically it makes sense to 

identify ~0 i asthedynamicallyslow~stvarying odd spin variable in a cell. We will return to this 

point later. 

Before going further we should comment on the constraint on T[p I~] given by (4.7). 

In the case of the majority rule choice for ~ (a) given by (3.14) one has that 
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and (4.7) is satisfied directly. For other choices of Cpl the quantity 

CT_#lp,] = < T~Ir-] T~, I r ]> (4.,s) 

is not diagonal. However, since G [t~ I t4'] is symmetric in t~ and 14', G can be diagonalized 

through a rotation in ~.-space. One must, however, exercise care that this rotation does not 

violate the condition (3.3). 

At the beginning of this section we indicated that we are interested in finding the SFO 

D [~11~'] appropriate to the t~-Iattice. At present we have only an expression for the time- 

evolution operator Gt[ ~ Its']. We must now indicate how one can extract Dt~ from G t [14j I~']. 

This indentification of D~ requires some formal development. Rather than working directly with 

Gt[141t~' ] it is formally more convenient to introduce the Laplace transform 

G,E~I~'] =-~  t G~bl~'~.  (~.,~) 

Using the definition of G t given by (4.1), we can easily carry out the time integration to obtain 

where Ra(z ) is the resolvent operator, 

= t ,Q- ' .  

Using the operator identity 

(4.15) 

(4.16) 

(4. ] 7) 

we find that G [ a 10"] satisfies the equation of motion 
Z 

It is then natural, taking into account (4.7),to define the operator Dz[tJ. IkL'] 

] = 
by the relation: 
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where we have taken into account the fact that D [#1~' ]  may depend on z. We are now left 
Z 

with the task of deriving an expression for D [/.1 j# ' ]  in terms of D [ a ]c~'] and T [14 Ic~]. 
Z 

This  d e r i v a t i o n  parallels methods used in the memory function formalism for flulds (14). 

One obtains f inal ly that 

(4.20) 

where we have specified that al l  the z dependence ( i .eo, the non-Markovlan part) of D 

contained in D c. D s obeys the equation 

b'~,]Pr?,,] = { TT,,.,,~] % Tr.,,,,I~I~ (4.21) 

while 

- " -~r-I-'l T[-'l,r]R#)(b,,TC,,,,ifl) ;<(kT~,4~,#,,)T[,~,,.#C~ "* ' '  ~ ~"  . , . . , .  <4.22)),,b 

where in the last line of (4°22) summation over ~ and ~' is implied and R'c~ corresponds to 

Rc~(z ) with D a -~ 'Da " Equations (4.20), (4.21), and (4.22) give one well defined statistical 

mechanical expressions for the new SFO on the #- la t t i ce .  We note immediately that D z [14 1 #' ]  

satisfies the fundamental constraints imposed originally on D [cr la']. This is, i f  D [c~ja'] satis- 

fies Eqs. (2°7)and (2.9~then one can easily show that 

7 ,  P [ , , ]  = o (4.23) 
,..j., -, 

and 

b,,t#b,']Pf-,,,'l-- b,~r.,, I,,,]'PL/] (4.24) 

B. The RSDRG to Zeroth Order in the Cell Coupling. 

We have developed our general formalism for carrying out dynamical RSRG transformations. 

We have seen how the new generator of correlation function, Gz[1411~] , and the new SFO 

Dz[P-114'] are defined in terms of D[ala'] and the RG transformation function T[14 I a ] .  

Several important points must be sorted out: The first, and technically bothersome point, concerns 

the non-Markovian behavior of the new SFO Dz[141~']o From a RG point of view we must be 
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sensitive to the fact that our original problem defined on the G- lat t ice,  is Markovian (D [ a l a'] 
is time independent) and we desire to map this problem onto as similar a problem as possible on 

the p - la t t i ce .  Is this non-Markovian behavior an essential problem? Two other points concern 

the best choice ~or T [I~ I a] in the dynamical case, and the degree to which we can expl ic i t ly  

calculate the frequency dependent part of the D c [ p  IP'] ? We shall see that al l  three points z 
are interrelated. 

We can gain some understanding of our problem by considering the calculation of G t [p jp ' ]  

for the case where we divide our lattice up into cells and treat the cells as uncoupled. Such a 

calculation gives one the zeroth order contribution for an expansion in the intercell coupling. 
~ O  

In this case the SFO D a involves only intracell couplings, so we can write 

De, = '~__.t ,,...V. 

o r  

, E ; ]  

I 

~ i t o  
where D a operates on the cell i only.  

by the Hamiltonian 

(4.25a) 

(4.25b) 

The static properties of this system are governed 

° 
! 

The associated probabil ity distribution is a product of contributions from each cell 

I 

where 

(4.26) 

(4.27) 

(4.28) 

and :C i means we sum over the degrees of freedom of the spins in the cell i . The RSRG trans- 

formation for the statics is relat ively tr iv ial  in this case, 

i )_-~n 

=" ~-~'~; ; (4.29) 

where n is the number of spins per cell and Po [~] is independent of ~ .  If matters are 
~ i , o  i 

arranged properly, then D a and H a [a ]  are compatible in that the detailed balance 
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condition Eq. (2.7), and the symmetry condition Eq. (2.9) are satisfied cell by cel l .  For a cell 

~ i , o  23 23 with three spins the operator D a is a x matrix. In practice it is relat ively easy to 

diagonalize this matrix in order to obtain the eigenfunctlons and eigenvalues defined by 

~; '~  ~r- ~ ; ~  : _ ;~  ~L~' (~) (4.30) 
It is easy to see that the ~i's can be chosen to form a complete and orthonormal set for a given 

cell with respect to the weight function PIo[CT] : 

i o" where 6o. , o -I means that a = for al l  spins in the cell i .  Using the completeness of the 

cell eigenfunctions, we can write 

-r;r_rl~] = ~ (I + ~ :  

where 

(4.34) 

Using the eigenvalue equation (4.30) and the completeness condition (4.32) (remembering that 
, n ~0i(a ) is odd in a ,  so the ~'i n in (4.33) are odd, and therefore ~ i  }o = 0 ) ,  one can 

expl ic i t ly  average over the a-variables in (4.5) to obtain 

O 

I 

where  we have  used ( 4 , 2 9 )  . 

and 

,u:,u; ~ O_ -~"~: 
Not e  tha t  a t  t = 0 ,  us ing  (4.32), (4.34), and  (3.7) t h a t  

C ~ - . t  (4.36) 

(4.37) 

as expected. 

We can analyze G~[bL/~'] using the Laplace transform method discussed in the last 
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section in which case one finds that 

I ~,~ 

where 

(4.38) 

(4.39) 

and 

= c . ' c . ,  . 

Alternat ively,  we can work directly in the time representation and write 

(4.40) 

e___ &,.,, 
where we can identify 

O 

- -  ~ - -  ,)L't;~Ltl; Z k~ ,~ '  (4.42) 
I 

and we now have a t lme-dependent  inverse scattering time which can be written as 

_ ) q: 

O 
Notice that Dt[ t~ I> ' ]  is of precisely the same form as D [a lc~'] given by (2.12) with the 

interaction between spins set to zero. For long times a,'(t) = X I (the eigenvalue for the slowest 

mode) and the last term in (4.43) decays exponential ly. The worrysome term is the 1/t term 

which indicates a long-range in time interaction not included in the original problem. 

In the case of the Laplace transform representation, one sees that the operator D ° (z) is 
F~ 

not of the same form as D~(t) . One sees that there are now long range spatial interactions 

generated. The form of the renormallzed operator D looks different i f  we work in the time or 

the frequency domain. In the time representation we see that the form of operator for D re 
~t 

duces to the form for D a as K "~ 0 . The di f f icul ty is that the inverse f l ipping time is now 

itself tlme dependent. More worrysome is the fact that there is a long range aspect to thls time 

dependence. If we work in the frequency representation, we find that we can compute 

the matrix elements of the operator Dl~(Z ) directly and they are local in time in that the small 

z l imit is well  behaved. Even though the indivldual matrix elements of D [> II~'] are wel l  
z 

behaved, there are an inf ini te number of distinct matrix elements which correspond to couplings 

which build up in time. These new couplings are highly non-local in space and very undesirable 
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from a RG point of view. The time representation and frequency representations are complementary 

since D#(t) is a local operator in space but non-local in time, while D ( z )  is local in time, but 

non-local in space. Note that we obtain different prescriptions for the renormalized parameters 

(say c~' ) using the two different methods. Either way we look at the problem we see that we 

are in trouble without further constraints on our RG procedure. 
~ 0  

Summarizing these results, we see that for a given SFO D c~ and a given mapping function 

T o [14 la]  the RSRG leads to complicated and physically unsatisfying results to zeroth order in the 

coupling between cells. The problem is that we can not choose the mapping function T ['14 ja] 
0 

arbitrari ly once we have an operator D a . 

Our technical problems in zeroth order are remedied i f  we simply choose the function 

q~i(a) in T i [ # j a ]  to be one of the odd elgenfunctions of Dc~ Physically wewant to  

choose q~i = ~]  where ~! is the odd eigenfunction whose eigenvalue X I is the smallest 
I I 

in magnitude. We then have the mapplng function (let ~. - ~'! ) 
I ! 

( ,) -- ; , , , , a ;  (4.44) 

We see from Eq. (4.10) that to lowest order G t [ # l ~ ' ]  generate the time correlation functions 

between the slowest modes in a cel l .  Physically, this is precisely what one wants, and is in 

keeping with our identification of the #-variables as representing an overage spin for a cel l .  

It is convenient, in order to appreciate the ut i l i ty  of Eq. (4.44) to look at the effect of applying 
~ 0  
D o to To[P la]  : 

I 

(4.46) 

The above expression can be rewritten as: 

A ~ ; ~  
-± (4.47) 

where we have made use of Eq. (4.9). Notice then that (4.47) can be written in the form 

where 

I 

A t ; ]  
(4.49) 
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Notice that this result agrees with Eqs. (4.42) and (4.43) with C n = 6n,1 • Equation (4.48) 

is in the form of an eigenvalue problem in a-space where the eigenvalues are operators in 14- 

space. This equation is extremely useful. If we return to Eq. (4.5), in the case of no intercell 

coupling, we see, on repeated use of (4.48), that 

(4.5o) 

Similarly, i f  we return to the frequency representation for D 
t4 

that 

• we find using (4.48) in (4.21) 

(4.51) 

we see that the where D°14 is given by (4.49). Turning~to the calculation of DC[1411 ~ ' ] o  ' 

last term on the right in (4.22) can be written• using (4.48)• as 

- i  D° r- b 3<To l 1-o [.7"1 

° - ,  _ , , - ,  - ,  4o 

Thls cancels the first term on the right in Eq. (4.22), and therefore D c vanishes. With the 
0 

choice for T given by Eq. (4.44) the renormalized operator D°[14 IB'] is given by (4.49) 
0 

using both the tlme and frequency representations. 

We have seen• therefore, how in thls particular example it is possible to choose a trans- 

formation T [14 l a] which is not only clearly very appropriate from a physical point of vlew, 
O 

but also, from a calculational point of vlew. It is extremely convenient, because all non- 

Markovian terms (regarding D c) are automatically eliminated. As soon as the choice of ~0i(~ ) 

in T[~ j a] becomes tied to the dynamical operator ~'o we lose the freedom of adjusting the 
(7 

statics independent of the dynamics. Consider the recursion relation for the statics given, for 

example, by Eq. (3.12). The parameter ~; defined by (3.13) depends on ~ i ( ( : )  and in turn 

on the dynamical parameters specifying D ° [e l  c~'] . This means that the recursion relation for 

the statics wi l l  couple to those for the dynamic parameters. 

C. The General Eigenvalue Method. 

In the last section• we showed that through a particular choice of To[ ~ l(:] we could 

eliminate all non-Markovian behavior to zeroth order in our RSRG transformation. We show in 
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this section that one can eliminate non-Markovian behavior to a I 1 orders in perturbation theory. 

Similar ideas were developed elsewhere(15)in the context of RSRG methods for treating quantum 

spin systems. 

Let us assume that we can find a T[# I c~] such that 

~[.-i<] T[N~] -= ~ ~r~,~,~] Tr~,~] (4.52) 

where D'[alc~'] isa given SFO and E [# IP ' ]  isan operator in p-space. Equation (4.52)is 

the ful ly interacting generalization of Eq. (4.48). It is easy to show, using Eqs. (4.20), (4.21), 

and (4.22), (4.7), and (4.52) that 

DEeI,~'3 Pit'] = b'Eei~'] pr,~,] (4.5a) 

(4.54) 

(4.55) 

and 

G,:[.~,3 = ~ t  g,.,,,.,.p~,q. 
(4.56) 

The question now is whether we can practically find a T[14 I c~] satisfying (4.52) and (4.7). We 

discuss here the construction of T using perturbation theory. 

Let us assume that Dcr can be written as a power series in ¢, where c is a "small" 

parameter. For definiteness, we wi l l  assume that our system is coarse grained into cells, and 

is related to the intercell coupling: 

I*1~o 

We then assume expansions for T 

T[e,,d= "~ z" 

and D : 

Inserting al l  the expansions into (4.52) and equating powers of 

(4.57) 

(4.58) 

¢, we obtain: 

(4.59) 

(4.60) 
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" ~  a, ( I  

= D'~1T,,c~.w]-b~J,~]To~.~l~]  (4.61) 

e.ke-. (4.62) 

where summation over barred spin indices is implied. We assume that (4.60) is equivalent to the 

zeroth order result (4.48) and we assume, therefore, that T [~ l~'] and D°[p J H'] are known. 
o 

The problem is then completely analogous to standard Schr6dinger perturbation theory, D 

corresponding to the elgenvalue, and T to the elgenfunctlon. In the ordinary perturbation 

case, one can always choose the higher order corrections to a given elgenfunction to be ortho- 

gonal to the zeroth order part. This is also the case here. Starting from any zero order trans- 

formation, T , we can build an operator ~ [~ l a] which satisfies Eqs. (4.60)-(4.62) with 
n o ,-,(n) _~-~(  ) , ~p u 14 ana the normalization conditions 

(4.63) 

< To[,,~,-] Tot~,t~-]>o-- ~bv.,, Pot,,1 (4.M) 

and where T O = T O . If we then multiply (4°61)by T o [ ~ ' l a ]  and average over Po[c~] we 

obtain 

- D~,.al~'Tob.., , . l  To~, , I>o-  <T.1:~lv] ~('~ - 0~- T~ r.~l~])= (4.65) 

By using the adjoint property of ~o ,  Eqs. (4.60) and (4.63), i t  is found that the first term on 

the left of (4.65) vanishes. The second term vanishes also because of (4°63), and we are left 

with: 

~:~.ij.,JPo[..,] = < T o [ , . , W l  B"2 ToIL.~Ir]>o . 
(4.66) 

Knowing =(1)L~14 , we can go back to (4.61) and determine T (1) . This requires inverting the 

matrix 15°(crier ') 8p, 1 4 , - D ° ( p l ~  ' )  6cr, c ~, al l  of which can be done by uslng straight- 

forward perturbation theory techniques. The calculations are rather long, and they are carried 

out in Refo 2 where the general expression for T -(1) is obtained. Of course, to calculate DI~ 
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to first order, one does not need T(1)  just as one does not need the first order eigenfunctlons to 

calculate the energy levels to first order. T (1) is needed to obtain D[~ J~'] to second order in 

¢ . Once T (1) is found, an analysis of Eq. (4.62) identical to that carried out above for 

Eq. (4.61) yields: 

[',~1~ 4 r= ~ J = ~.,(2) --.- 

. 

It is clear that this procedure can be carried on to any order desired. There is, however, an 

additional problem left and that is the mapping function T we have constructed, satisfying, the 

normalization conditions (4.63) and (4.64), wi l l  not in general satisfy Eq. (4.7). This complication 

can be remedied by rotating T[ ~1c7] in ta-space into T[IJ-I a] : 

where S is a symmetric operator, to be determined from the diagonalizatlon condition (4.7). 

In (4.68) and below summation over repeated barred indices is implied; of course, we must care- 

ful ly preserve Eq. (3.3) as wel l .  We note then that 

with: 

from which i t  follows that: 

D w1P  ] = <,Tr  (4.7,) 

as desired. 

The simplest way of preserving (3.3) is by imposing the condition on the rotation matrix 

~.,/A ?& (4.72) 

It is not di f f icul t  in perturbation theory to construct S for a given T . 

In this section, we have developed a general formalism for carrying out our RSDRG trans- 

formation in a way that preserves the time-independent nature of the SFO. In developing this 

method we have had to enlarge the class of transformation functions T[~I c~] beyond the product 

form (3.4) . In particular at first order in ~ one finds that T (1)[~lc~] contains couplings 

between cel Is. 
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V.  Applications 

In this section• we discuss the application of the formalism we have developed to two 

different calculations. The first calculation corresponds to a direct generalization of the NvL 

cumutant expansion to dynamics and is carried out to first order in the intercell coupling. The 

second calculation builds on the first and indicates the relevant role of a dynamic variable gen- 

erated in a second order calculation. 

A. First Order Cumulant Expansion. 

The general RSDRG procedure is very direct. Starting with a given D'c~ and H [ a] one 

constructs D~ and H[~]  . From H[~]  one extracts the static parameters as in Fq. (3.12). 

Dm and Dc~ will both be of the same general form given by (2.17) with the functions W[~] 

being obtained from P[~] by the same procedure used to obtain W[a ]  from P[~] .  We can 

then extract the functions V [~] from D~ . The equations relating the parameters determining 

V [t~] to the parameters determining V[c~] are the dynamic recurslon relations. Let us assume 

thatour D'[~lc~'] is of the general form (2.17) with the W functions given by (2.20) in 

both c~ and ~-space. We assume to first order in ~ that D'[al c~'] can be decomposed in 

the form 

r.~i~-,.l-= Do[.~i~,] ~-~_ ~'~[.~-i~,] ~-o(~-~) (5.1) 

with Do acting on spins all in the same cell, and B(1) coupling spins in adjacent cells only. 

Using the perturbation theory results from the last section• we obtain from Eq. (4.60) and 

Eq. (4.66) that D [~ j~ ' ]  is given to zeroth and first order by: 

_ _ , 

, 2. (5.2) 

(,) 

< To i ]>o . (5.3) 

A direct calculation shows, to first order in e • that 

where 

(5.4) 

(s.5) 
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and H [p]  is of the same form as H[ or] given by (2.2) but with the new nearest neighbor 

coupling K given by Eq. (3.12). Notice (i) that we do not need ~(1) [~ la]  in our first 

order calculation and (ii) ( ? [ p  la] ? [p '  Icr] > is diagonal to first order and no rotation in p -  
o and D U)'" show that they are precisely of the same space is required. Detailed analysis of D~ 

form as D [a I~']  given by Eq. (2.17), with the W[~ ] ' s  appropriately determined by the new 

probability distribution P [~] and with the new couplings V [p ]  given up to first order by 

V£T.; "~ 
_ ;~>o (5.6~) 

~'I,) ~- - - ; , o j  (5.6b) 

1 6c) 

V~a'~']S [~' 1 = 0  (5.6e) 
where 

denotes nearest neighbor interactions. To first order in the intercell coupling there are no three 

(or higher) spin terms generated in the dynamical operator. These results indicate how the per- 

turbation theory method we have developed limits the number of coefficients that must be calcu- 

lated, and therefore, the complexity of the init ial D(a lc~') operator. We see then, as long as 

D'a couples only nearest neighbor cells in first order, that only three terms are generated at first 

order in perturbation theory. It is natural, therefore, to treat the problem where only these three 

parameters are included in the original operator D [ ~" ]a ' ]  . We start therefore with D [ cr Jc~' ] 

given by Eq. (2.17) with 

] - - o( (5 .7a)  

L~ ~ -- -- ~ ~;~ (5.Z~) 

(5 .7c)  

and all other V's zero. We then divide D ' [~ I~ ' ]  into an intracell part D '° [o l~ ' ]  and a 

part coupling cells. There are two types of terms coupling the cells. One coupling is through 

the W functions and the other through the matrix l l i  appearing in V 2 and V 3. The matrix 
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l i  i can be written in terms of cell variables as 

T;~(~,,~ i) = I~](~,,:,') + "r"~(~ ~') 

z',]~o,o,) : ~,, .~. ( So;o,,. so,,o-,) 

(5.8a) 

(5.8b) 

(5.8c) 

where c is the lattice constant on the t~-Iattice and the notation a + 1 stands for the vector 

+1 In the statistical factors like W for [ ~ , a ] ,  w e  c a n  wri te,  example, 

( I )  r " I  
WE%,.] : M,, r ,n, ,,.] + z ~ L~,,,~ ',- o c t ' )  

where 

Wo[~,,~] = P--_T K~'"(~'°' '  ~"° - ' )  

(5.9) 

(5.10) 

W C i l  w,,.] klot~,o] ( -  ~,,. ~ ' "  ) - -  Ic.;,,~ (v'1 (5.11) 

and 

j ~, (5.12) 

is the interaction energy on the spin at site i ,  a due to spins outside the ith cel l .  Given the 

expl ic i t  form for the single cell operator, 

D o t . , -  t "-,- '  ~ o ~  " "  • • ; ,~W 

At ; ,~ ,  i~°l I 

4 ;,~,Q' (5.13) 
,, t;%;~'] _ ° 

where X - / ~ . ~ t r '  bIX)o[~. , ) l~, , , ]  

k/oil, . ,  r,,.,] - e_ -"~t'a (5.1,) .) 

the next step is to construct the slowest odd eigenfunction and elgenvalue. One finds after a 

straightforward calculation that 

and 
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where 
b 

I~ 1 '/~ 

r = < ~ .  ~ . . ,>o = ( ~ - , ) / ( × + s )  

(5.16) 

(5.17) 

(5. ]8) 

(5. ]9) 

(5.20a) 

(5.20b) 

(5.2oc) 

(5.2od) 

(5.21a) 

(5.21b) 

(5.21c) 

and 
(5.22) 

X -  ~--.¢~" , (5.23) 

We have then only to carry out the cell averages indicated in Fq . (5.6) to obtain the recursion 

relations, valid to firsf order, 

r.,,,] = - ~ ,  (5.24a) 

(5.24b) 
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(5.24c) 

where 

b = < ~.~, ,q ~,,- ~;c~>: 
(5°25) 

= "Xt-~- 

and 

Comparing the results on the ~-Iattice given by Eq. (5.24) with Eq. (5.7), we see that the 

V [~] 's are of precisely the same form as the V [a] 's. We, therefore, have the closed set of 

recursion relations 

6' = 2-D ~# 

K I = ~ ' D  ~" K 

where, using Eq. (3.13) and (5.15), v is given by 

- ~,÷~ 

(5.27a) 

(5.27b) 

(5.27c) 

(5.27d) 

(5.27e) 

In analyzing these recursion relations, we found it convenient to introduce the ratios 

RIB : ( 3 / ~ /  (5.28a) 

and 

R~ : ~I~<. (5.28b) 

We interpret the fixed points of our RG transformation in the following manner. Our original 

SFO is of the form 

D r -  J : ) ~ - ( ~ . , # , ~ K ) =  ~ I% ( , ,R# ,R~ . ,K )  . 

(s.29) 
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We choose to extract an overall factor of a,, rather than JB or y ,  since we expect ~ wi l l  

scale more slowly to zero under the RSDRG than ~ and ¥ . We display the fixed points of our 

recursion relation in Table 1 and find that for al l  of the physical fixed points c~ is a relevant 

variable. Ry is driven to zero for al l  of the fixed points, while there is one fixed point where 

Rj~ is f in i te.  

1). 

2) .  

T a b l e  I .  

TABLE I 

K R~ R~ Z 

. 2 1 2  0 0 .841 1 . 7 5  

. 213  - . 1 8 6  0 1 .701  1 . 7 6  

F i x e d - p o i n t  v a l u e s  f o r  K,  R~, Rq, 

the  d y n a m i c  c r i t i c a l  i n d e x  z and 

the  s t a t i c  c r i t i c a l  i n d e x  v .  

as 

Since 

If we are at the fixed point K= K*, Ry = Ry* and 

(i, K 

X 1 is proportional to c~ we can write 

R~ = R~*, then the SFO transforms 

• (5.30) 

and the time evolution operator transforms under our RSDRG transformation as 

and dynamical scaling follows through the simple rescaling of time by 

fJ = 

(5.31) 

(5.32) 

•5.33) 
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SO 

~__~'c iS ~ ~:' 

It is then conventional to define the dynamical crit ical index z 

= 

(5.34) 

by 

( 5 . 3 5 )  

( = ~ "  for a two dimensional where b is the spatlal rescaling factor of the RG transformation 

trlangular lattlce), so 

= - -  ~ , / , ~ / . ~ v ~  Io • ( 5 . 3 6 )  

The value we find for the dynamical index z corresponding to the most stable fixed point is 

z = 1.70. This value is slightly less than the rigorous lower bound of 1.75. It is, however, not 

206)2.125 (17) unreasonable when compared with the high temperature results of z = the Monte 

Carlo results (18) giving z = 1.85. 

The c lear weak point in this first order calculation centers about the poor static results. 

The value for the transition temperature is reasonable, but the crit ical index v is very poor. 

It is easy to trace the reason for this behavior. The parameter f l  ' which characterizes the rel- 

ative amount of c~ T and ¢r C in ~ ,  scales to very small values or zero for al l  of the fixed 

points found in this first order analysis. Recall that when one uses the majority rule for c~i , 

which gives a reasonable estimate for the static exponents, one has f l  = 1. Our c~, I~ • y • 

model has no mechanism in a first order theory for maintaining f l  near 1. The fixed point elgen- 

functions ~" therefore are essentially l inear. 

B. The c~-6 Model. 

The next logical step in our development is to go to the second order calculation to see 

i f  our results are substantially improved. In the other problem (15) where these methods have been 

used the second order calculations improved the results considerably. While we have been inves- 

t lgating such a complete second order calculation, the results are stil l incomplete. The calcula- 

tion is rather involved. At second order one finds that a total of 13 new couplings are generated 

and one must consistently include all  19 couplings in the problem. There is also another reason 

we don't procede directly to the second order calculation. There is now a good deal of evidence 

that there is one parameter generated at second order, starting with the c~, I~ • Y • model dis- 

cussed above• which is more relevant than ~ or y and which is the key parameter controlling 

the behavior of the nearest neighbors of a spin at site i that is involved in the fl ipping process. 

Let us define what we wi l l  call the c~- b model• a member of the class of models we 

have been studying thus far, by 
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a( S 

I 

where W[ o'.] is given by Eq. (2.15)and 
I 

$ 

so we see that ~ijk generates the (6) nearest neighbor triang]es about the ith spin. Note that 

the b-term did not appear in our first order calculation and corresponds to a ~ dependent 

contdbufion to VI[ i][a]  in Eq. (2.17)o Starting with the a ,  ~,  y model a b-term is 

generated in second order. We can best understand the relevance of the b-parameter by looking 

at the intracell contribution to D[a I~'] given by: 

: -  , (, 

We can then easily solve the elgenvalue problem 

;~ ~,~., E~_, } .  {5.40) 

Figure 2. Plot of the elgenvalue X 1 

respectively for the operator 

(5.40) as a function of the 

parameter b and for several 

values of the ooupling K. 

to obtain the slowest odd eigenfuncfion and the corresponding eigenvalue. In Fig. 2, we have 

platted the eigenvalue ;k i /z :  and the quantity f] far fixed temperature as a function of ~ . 

and coefficient f l  def[ned by Eqs. (4.30) and (3.9) 

i , O  I I I I I I I I I I 

.9 ~y,~.x - / J ~ f l  - 

.8.7 ~ " 
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., \ 
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We obtain the interesting result that as b->l X 1/0~ approaches zero and f l ~  I o This means 

that for a model with b = 1~ at zeroth orderlthe slowest mode is given by the "majority rule" 

(,~r) ~;=~ -- E , ) (5.42) 

and r to lowest order  t this mode doesn't decay! It should be clear that the b-variable is impor- 

tant in controll ing the accuracy of the static recursion relations. Armed with this informationr 

we can set up the fol lowing perturbation theory calculation. We must~ for consistency~ treat the 

term multiplying the part of Asij k coupling cells as being second order in ¢ . We wi l l  also 

treat the difference 6-  1 in the intracell part of De as a second-order quantity. We can 

then write 

(5.43) 

where 

9 o b ' J ~ ' ] - -  - <- 
/•f.;, al 

Z • ~,,,, bdoL~;,.l ~,... ~,'~ (, ~- ~,,o., ~°-,). (5.44) 

We have1 in this case r insured that to lowest order in 

for ~0 i is an eigenfunction. This immediately gives us that 

D ~ W : I  = o 

The first order contribution to ~'(1)[~ la'] comes from the W [cri, a] 

show that 

. T o b ~ ]  = o 

¢ , X1 = 0 and the majority rule choice 

(5.45) 
term and i t  is easy to 

(5.46) 

Then we easily find that: 

(5.47) 

Since the first order contribution to T satisfies 

-- ? 
(5.48) 

and 

<. %[,~,1 ~3 T'"b4, ]  2 = o, 
(5.49) 

a consistent solution is 
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T~'~.~lv]-.: o (5.50) 

Going to second order, we have 

Averaging over To[bt' 1o] times Eq. (5.51) gives 

Worklng at second order, we don't need T (2) [pjcr] . In this case, we find directly that 

- &~,, 4 % I ~ 1 ~ ] )  t- oCzD (5.53) 

and, again we don't need to perform a rotation in #L-space. We see that at zeroth and first 

order only the statics are affected and one obtains the Nvk statics at first order and second- 

order in the intercell coupling. 

Al l  that is left is the expl ic i t  evaluation of D(2) [PIP'] using Eq. (5.52)° One finds 

after evaluating these matrix elements that D(2)[p I~ ' ]  is of precisely the same form as Eq. (5.37) 

with the new parameters. 

(5.54) 

.~. (5.55) 

where, as before, 

r -~ ( × - , ) / ( , , - ~ )  i5.5~) 

and, in this case, 

with x given by (5.23), If this procedure is to be consistent than there must exist a fixed 

po in t6 *~ l  . In particular, we find a non-tr lv ial  fixed point at 

~'*= (r- '~ -~ ( ~ W - " ~ - 0  i558) 
If we take this together with the second order fixed point value for K* --- .2789, we obtain 
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~ -- . 94" 

From this we obtain at this fixed point 

and 

(5.59) 

(5.60) 

2 . 2 . Z  

(5.61) 

together wlth the static results (due to NvL) K c = .251 ( .275 exact) and v = .950 (I exact). 

These calculations indicate that bis~a relevant parameter (the fixed point 6"  = .94 is 

unstable in the same sense as K* = .2789). Ultimately b is driven by the temperature and 

apparently must be fixed at the crit ical point just as the temperature and magnetic f ield must be 

adjusted at their crit ical values. 
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V I .  Discussion 

We have presented a new real space dynamic renormalization group theory. This theory 

deals with the major problem of non-Markovian behavior associated with RG dynamical transfor- 

mations, The resolution of this problem puts new constraints on the admissible RG transformations, 

We have seen how our formalism can be applied in two model calculations. Our results seem 

very encouraging and can apparently be systematically improved. We are presently investigating 

further applications of these ideas, 

We note in closing that there are several other schemes (19) for applying the RSRG to 

dynamics. These methods have been more or less successful in calculating the dynamic index z 

for kinetic Ising models. It is very d i f f icu l t  at this point to compare these methods with our own 

since they don't address the general questions of handling non-Markovian terms and the generation 

of new couplings in the SFO Dc~ . 
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LIGHT SCATTERING FROM HELIUM 4 

NEAR THE LANBDA POINT 

T.J. Greytak 

Massachusetts Institute of Technology 

Cambridge, Ma. 02139/USA 

A. Introduction 

For over forty years liquid helium 4 has fascinated physicists be- 

cause of the strange phenomena such as frictionless flow and the wavelike 

propagation of heat that occur below the superfluid transition tempera- 

ture, T~. Recently, however, attention has been focussed on the super- 

fluid transition itself as a testing ground for our understanding of 

second order phase transitions. The critical phenomena experimenter 

views liquid helium 4 as a homogeneous substance composed of atoms with- 

out thermally accessible internal degrees of freedom. It can be prepared 

with a very high degree of purity. The temperature of a sample can be 

made uniform, held constant in time, and measured to better than a part 

in 106 . The critical phenomena theorist views superfluid helium 4 as a 

system of spatial dimensionality d = 5, possessing a two component order 

parameter, n = 2. The inconvenient fact that the order parameter is a 

complex scalar which is not directly observable by experiment is mitigated 

by the presence of two inert variables, pressure and He 3 concentration, 

which can be used to test the hypothesis of universality. 

The critical fluctuations associated with T~ occur at long wavelength. 

As a consequence light, rather than neutrons, has proven to be the best 

scattering probe of the dynamic critical behavior. Light scattering 

(Brillouin scattering since one is looking at the thermal fluctuations) 

measures directly the dynamic structure factor, S(q,~), for the number 

density. Experiments are carried out at fixed wavevector q while a 

spectrometer sweeps over the frequency shift ~. Unfortunately, changing 

q is not easily done. q is related to the laser wavelength ~, the index 

of refraction of the helium nr, and the scattering angle @ by the expres- 

sion 
4~n r 

q - ~ sin@/2 (i) 

The scattering from helium is very weak and much of the important infor- 

mation in the spectrum is located near zero frequency shift, ~ = 0. 

Therefore, stray elastically scattered light must be eliminated or at 

least kept to a small, measurable amount. This is most easily done in 

a @ = 90 ° scattering geometry; thus, virtually all measurements so far 

have been made at this angle. This leaves ~ as the only remaining way 
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to change q. In practice X has been fixed by the convenient laser lines 

at 6328 ~, 5145 A, and 4880 ~. Tunable dye lasers could be used to vary 

q continuously; but, even there the range of q's available is not too 

useful in testing the q dependence of critical dynamics. In the future 

the use of discrete X's in the ultra-violet may serve this purpose. 

The latest light scattering results in liquid helium are contained 

in two recent, rather detailed, papers by our group at MIT (I) and by 

Vinen's group at Birmingham(2). The current agreement between the re- 

sults of the two groups is very satisfying; the differences, where they 

occur, are probably not significant. In this lecture I shall simply 

summarize the principal results. Before I do so, however, it will be 

useful to review the "expected" behavior of S(q,~) in the region near T~. 

The correlation length, C(T), associated with fluctuations in the 

order parameter diverges as the temperature T approaches TX. As long 

as one is far enough away from TX so that q~(T) << l, the equations of 

hydrodynamics may be used to describe the behavior of fluctuations of 

wavevector q. However, some of the thermodynamic parameters which are 

involved in the hydrodynamic equations may couple to the order parameter; 

in this case they may diverge or go to zero with some power law depen- 

dence on the reduced temperature, c z IT-T~I/T ~. Very close to the 

transition temperature, where q~(T) ~ i, the equations of hydrodynamics 

no longer apply. In this "critical region" we do not yet have a set of 

equations which can describe the dynamics of the fluctuations. In the 

extreme limit q~(T) >> I, the correlation length is so much greater than 

the characteristic dimension of the fluctuation, I/q, that its temperature 

dependence no longer affects the behavior of the fluctuation. In this 

limit the dynamics become independent of temperature. 

A schematic representation of the dynamic structure factor for 

liquid helium 4 is shown in Fig. i. S(q,~) contains distinct contribu- 

tions from the two hydrodynamic normal modes of the fluid: First sound 

and entropy fluctuations. First (or ordinary) sound is primarily a 

pressure fluctuation at constant entropy. It gives rise to a doublet 

in S(q,~) whose shift +~I and half width at half height F 1 are given by 

~I = Vl q 
(z) 

Fl = ~I Vl 

where v I and al are the velocity and attenuation coefficient of first 

sound. First sound is not the critical mode associated with TX, and its 

properties are only weakly effected by the transition. At zero frequency 

v I has a sharp minimum at T = TX; but v I does not approach zero. 
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S(q,~) 

/= =V,q 

(a) 

(b) 

Figure I:A schematic representation of the dynamic structure factor 
for liquid helium 4 above T~ (a), and below T~ (b~. At a 
pressure of 23.1 Bar and 1 mK below T~ typical spectral fea- 
tures are as follows: the intensity in the second sound line 
is about 40% of that in the first sound line, the shift of the 
second sound line is about 5 MHz and its half width is about 
1 MHz; the shift of the first sound line is 963 MHz and its 
half width is 7.4 MHz. 

At finite frequencies various processes associated with the phase tran- 

sition will give rise to an attenuation of the sound and an associated 

dispersion in its velocity (an increase in the velocity over its zero 

frequency value). At frequencies of the order of megahertz these pro- 

cesses are now well understood. However, for the higher frequency sound 

waves studied by light scattering (vlq/2~ ~ 500 to I000 MHz) other pro- 

cesses give rise to the dispersion and attenuation, and these processes 

are not yet understood. Experimentally, then, both the attenuation and 

the dispersion are expected to increase as the transition is approached 

and exhibit maxima somewhere near T~. 
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The entropy fluctuations couple directly to the order parameter 

and are therefore the "critical mode" associated with the phase transi- 

tion.(3,4) In the hydrodynamic region above T X the entropy fluctuations 

obey a diffusion equation and give rise to a single Lorentzian line in 

S(q,~) centered at ~ = 0 with a half width r 2 given by 

F 2 = D~q 2 for T > T~ (3) 

and q~(r) << 1 

Here D~ is the thermal diffusivity of the fluid, D~ ~ ~/pCp. As T 

is decreased toward T X critical effects cause D~ to rise above its 

non-critical or "background" value. Dynamic scaling predicts that D~ 

should grow roughly as s-I/3. The linewidth should increase in this 

manner until the critical region is entered. In this region the line 

shape will no longer be Lorentzian and the line width will reach some 

limiting value. Dynamic scaling predicts that the critical contribution 

to this limiting spectral width should be proportional to q3/2 

In the hydrodynamic region below T the entropy fluctuations obey 
X 

a wave equation and are referred to as second sound. They give rise to 

a doublet in S(q,~) with a frequency shift ±~2 and a half width F 2 

given by 

~2 = v2q for T < T~ 

and q~(T) << 1 (4) 

(D~ + D~] q2 
F 2 = 

where v 2 is the velocity of second sound (which goes to zero as T ÷ TX), 

D~ is the thermal diffusivity, and DC is a contribution to the damping 

which is intrinsic to the superfluid state. D~ + D~ consists of a 

non-critical background contribution which is a slowly varying function 

of T and a critical contribution which diverges as ~-i/3. The exact 

spectral shape of the entropy fluctuation part of S(q,~) is determined 

by the equations of two-fluid hydrodynamics as long as q~(T) << I. As 

the temperature is raised toward T~ the splitting of the doublet will 

decrease and its linewidth will increase. When T becomes so close to 

T~ that the critical region is entered, the width of the spectrum ceases 

to diverge and approaches a constant value. The exact spectral shape 

in this region is still a subject of theoretical speculation; but, it 

is unlikely that it will have the functional form characteristic of 

two-fluid hydrodynamics. Well inside the critical region, when 

q~(T) >> i, S(q,m) will no longer change with decreasing ~, and any 

parameters which might be used experimentally to describe S(q,~) will 

also become independent of e. The functional form of this limiting 
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structure factor, which can be approached from either above or below TX, 

is of particular interest in the theory of dynamic critical phenomena. 

In the hydrodynamic region the total scattered intensity is propor- 

tional to the isothermal compressibility which diverges very weakly when 

T ÷ TX. In the critical region the total scattering will level out and 

peak somewhere near T = T~. For a given ~, the isothermal compressibility 

decreases by about a factor of 2 as the pressure is raised from 0 to 

25 Bar, so the total light scattered decreases by that amount. The ratio 

of the light scattered by second sound, I2, to that scattered by first 

sound, If, is given to a high degree of accuracy in the hydrodynamic re- 

gion by the simple relationship 

Z2/I 1 = y - 1 (5) 

where Y ~ Cp/C v is the ratio of the specific heats, y - 1 also diverges 

weakly as T ÷ T~. However, it is expected that I2/I 1 will begin to fall 

below Y - 1 as one enters the critical region and go through a finite 

maximum in the vicinity of T = T X. Y - 1 evaluated at constant ~ has 

a strong pressure dependence. For ~ = 5 × 10 -3, below TX, Y - 1 is 

about .0095 at .05 Bar but .28 at 25.0 Bar. Experimentally, this means 

that the scattering due to second sound is too weak to be measured with 

any precision at low pressures, but becomes comparable to the scattering 

from first sound at higher pressures. This is why the results of ref- 

erences 1 and 2 were all obtained at pressures above 20 Bar. 

B. Second Sound 

The frequency of the second sound observed in these experiments 

varies, in the hydrodynamic region, from about 5 to 30 MHz. The veloc- 

ities obtained by Eq. 4 show no dispersion relative to velocities 

measured acoustically by Greywall and Ahlers(5) at frequencies three 

orders of magnitude lower. Both groups(l, 2) have indicated that por- 

tions of their velocity data seemed slightly higher than the low fre- 

quency velocities; but, the increases were within the combined uncer- 

tainty of the scattering and acoustic experiments which, for our data, 

was about 2%. 

Within the critical region Eq. 4 is not applicable. However a con- 

sistent ~2 can be defined as a parameter in a model of the (unknown) 

correct structure factor. Vinen and Hurd use as such a model the hydro- 

dynamic spectrum; we have used a pair of Lorentzian lines of equal area 

and equal half-width F2, displaced by ±~2 from ~ = 0: 

= 12F2 [ 1 + 1 22] (6) 
$2(~) 2~ (~-~2)2 + F22 (~+~2) 2 + F 



139 

20 

I 0 -  

(o2 
2rr 5 -  

(MHz) 

2 -  

1 -  

I00 

w 0 

- -  0 0 

I I I I 

Px = 23.1 BARS 

. ~  - 

I I I I 
I 0  I 0.1 0 .01  

TX (P)-T (mK) 

Figure 2: Second-sound frequency shift for the two-Lorentzian model. 
The solid line represents qv 2 with ~2 taken from Ref. 5. 
The dashed curve is the prediction of the planar-spin model, 
Ref. 6. The arrow indicates the temperature at which q~=l. 

An example of our results for ~2 is shown in Fig. 2. Note that ~2 does 

not go to zero at T~, as does v2, but it approaches a constant value. 

This is consistent with the concept of a limiting structure factor at 

T = T~ which is spectrally more complex than a single Lorentzian line. 

The data of Vinen and Hurd show a similar behavior. The arrow in 

Fig. 2 indicates the temperature at which q~ = I. We have used the 

expressions employed by Hohenberg, Siggia, and Halperin:(6) 

~t = 3 .6  ~ - 2 / 3  ~,  T < T~ 

~+ = 1.4 E-2/3 ~, T > T~ 

(7) 

Here the subscript t used for T < T X indicates the correlation length 

for transverse fluctuations in the order parameter, and the subscript + 

indicates a correlation length defined in a different manner for T > T~. 

Notice that ~2 deviates from ~2q only after ~ exceeds I/q. Above T~ 

Vinen and Hurd switch to the two-Lorentzian model, Eq. 6, and show that 

m2 begins to decreases as ~ increases and is zero to within the experi- 

mental uncertainty by the point at which ~ again falls below I/q. Our 

results show a similar behavior. 
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Figure 3:Half width for the two-Lorentzian model of the entropy spectrum. 
The solid lines correspond to Equations 3 and 4. The dashed 
curve is the prediction of the planar-spin model, Ref. 6. 
The arrow indicates the temperature at which q~=l. 

The most surprising result of the light scattering measurements is 

that the damping of the high frequency entropy mode is almost independent 

of temperature over 4 orders of magnitude in ~ below T~ and 3 orders 

above. This is illustrated by our results at 23.1 Bar shown in Fig. 3. 

A particularly disturbing feature is the apparent deviation from hydro- 

dynamic behavior in the hydrodynamic region below T~. Tyson (7) has 

measured (D~+ D~) at low frequences by acoustic techniques. His data 

was taken at these temperatures but at saturated vapor pressure. The 

pressure dependence of the background contribution is not known; but, if 

it is similar to that of the background D~ above TX,(8) then it is weak. 

The pressure dependence of the critical contribution follows from the 

dynamic scaling relation that (D~ +D~)CRITICAL = a~2~ where a is a 

numerical constant of order unity. ~2 at a given ~ decreases slightly 

in a known fashion(5) with increasing pressure, but it appears that 

at a given ~ is independent of pressure(9), The solid line for T < T~ 

in Fig. 3 is obtained using Eq. 4 with Tyson's measured values of 

D~ + D~ multiplied by v2(23.1Bar)/v2(SVP) = 0.71. Notice that the re- 

sult rises significantly above the data well before q~ = i. The lowest 

D~ + D~ found by Tyson was 4.l x 10-4 cm2/sec; this corresponds to the 
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Figure 4: Damping of the entropy fluctuations at different pressures. 
The quantity £2/q2 is equal to (D~+D~)/2 in the hydrodynamic 
region below T~ and to D~ in the hydrodynamic region above 
TX. The data at 23.1 and 28.5 Bar are from Ref. 1 and were 
taken at q = 1.79 x 105 cm-l. The data at 20.2 and 22.8 Bar 
are from Ref. 2 and were taken at q = 1.88 x 105 cm-l. The 
data at 1.94 and 28.5 Bar were obtained by Winterling 
et aZ.(ll,12) at q = 1.45 x 105 cm-l. 
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value at the minimum of the damping versus temperature curve measured 

by Hansen and Pellam(10) in earlier experiments. If one takes that to 

be the background damping and assumes that it is pressure independentp 

then the background F2/2+ would be 1 MHz and the solid curve would be 

shifted upward by about 0.3 MHz, increasing the discrepancy even fur- 

ther. Above T~ the hydrodynamic result based on Eq. 3 also rises above 

the experimental measurements. There is no discrepancy with hydrody- 

namics here, however, since the deviation does not occur until the 

critical region has been reached and Eq. 3 no longer applies. It is 

interesting, though, that in the hydrodynamic region for light scatter- 

ing above T~ the only significant contribution to D~ is the non-critical 

one. In fact it appears as though one can cross the entire phase tran+ 

sition region without seeing any evidence of a critical contribution to 

the damping of the high wavevector entropy fluctuations. 

4 I I I I I 

+o 3 
x 

A 2 
"o- 

t 

O I I I I I 

0 5 10 15 20  25 3 0  
P ( B A R )  

Figure 5: The pressure dependence of the second sound damping at 
E = 10 -3 below T~. The error bars are estimated from the 
scatter in the data points on Fig. 4. The solid line is 
proportional to the velocity of second sound, ~2, and was 
adjusted to go through the data point at 23.1 Bar. 

Similar behavior has been found in all of the light scattering 

measurements of the entropy damping. These results are collected in 

Fig. 4. Figure 5 shows the damping at a value of ~ = 10 -3 below T X 

as a function of pressure. From this it appears that the substantial 

increase in the damping between 20.2 Bar and 22.8 Bar found by Vinen 

and Hurd may be spurious. 

The constancy of the entropy damping, in particular the discrepancy 

with hydrodynamics below T~, has been quite puzzling to theorists.(!3) 

Recently, however, two new ideas have emerged which may explain the 
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results. First recall that the entropy, s, is a quadradic function of 

the order parameter, ~.(3,4) Then a fluctuation in the entropy at a 

wavevector q, s(q), must be represented by a sum over products of order 

parameter fluctuation ~(k) ~(k') whose wavevectors are related to q by 

the expression 

= + (8) 

Dynamic scaling arguments apply primarily to the order parameter. In 

particular the critical region boundary should be k~ = 1 rather than 

q~ = i. The distinction is not important, however, as long as the mag- 

nitudes of the k's in Eq. 8 are close to the magnitude of the resultant 

q; and this had been assumed to be the case. But recently Ferrell, 

Dohm, and Bhattacharjee~ 14) pointed out that a model can be made for 

liquid helium in which the k's entering Eq. 8 are an order of magnitude 

larger than the resultant ~. This is associated with the assumption 

that the fluctuations in the order parameter may relax an order of mag- 

nitude more slowly than fluctuations in the entropy. Now if k >> q then 

the condition k~ = 1 occurs for a value of ~ which is smaller than that 

for which qg = i. This means that the critical region will begin farther 

away from T~ than had been assumed. The calculations show that the E 

at which hydrodynamics breaks down could be an order of magnitude larger 

than we have indicated. This would explain why the second sound damping 

does not follow the divergent D~+ DE: the critical region is entered 

before the rise is appreciable. 

Ferrell and Bhattacharjee(15) have now extended their calculations 

to take into account the non-critical background contribution to diffu- 

sivities. They find that these terms do not simply contribute in an 

additive fashion to the total damping. Rather, in a subtle way they 

also decrease the magnitude of the critical contribution to the damping. 

Above T~, their calculations can reproduce the magnitude and temperature 

dependence of the data shown in Fig. 3. They have also explained quan- 

titatively the deviations from the scaling prediction found in the pre- 

cise thermal conductivity measurements made by Ahlers(9) very close to 

T~. The theory seems less successful below T X. Although it gives the 

correct magnitude for the damping data in Fig, 3 near TX, it predicts 

that F 2 decreases slightly as T is lowered, whereas the measured F 2 

rises. A more serious problem is that the background corrections should 

also lower the critical damping contribution to D~+ D E at short wave- 

vectors to a value much smaller than that which was actually observed 

by Tyson. 

Vinen and Hurd(2) have developed a phenomenological theory for the 

critical dynamics. They are able to use their theory to account for the 
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anomalous behavior of the second-sound linewidth in the hydrodynamic 

region, although it gives predictions for other measurable quantities 

(such as the dispersion in v2 and the deviation of I2/I 1 from Y - I) 

which are not in agreement with the data. It is interesting to note, 

however, that their theory shares with the microscopic theories(14, 15) 

the idea that the dominant order-parameter fluctuations relax more 

slowly than the fluctuations in the thermodynamic variables, such as 

the entropy. 
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Figure 6: The two separate contributions to the hydrodynamic linewidth 
at a pressure of 23.1 Bar. F~/2~ = D~q2/4~ and F~/2~ = 
l~tq2/4~. 

The precise spectral shape for the entropy fluctuations in the 

hydrodynamic region below T~ depends on only three parameters: ~2, 

D~+ DE, and D~/D~. They can be roughly thought of as determining 

respectively the shift, width and asymmetry of the lines. The ratio 

D~/D~ is difficult to measure accurately in these experiments. At low 

temperatures and large shifts the lines are close to Lorentzian in shape 

and insensitive to D~/D~.. Close to T~ where the shift and width become 

comparable, and D~/~has a stronger influence on the spectral shape, 

one enters the critical region where the hydrodyanmic form may no longer 

be applicable. Fig. 6 shows our results for the separate contribution 

of D~and D E to the total linewidth. They were determined from fits of 

the data to the exact hydrodynamic spectral shape. They indicate that 
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D~ is about 2 or 2.5 times as large as D~. Vinen and Hurd find that this 

ratio is of the order of 1 or 2, a result which they find extends into 

the critical region when they use the hydrodynamic spectrum to model the 

true critical one. Although it is clear that light scattering does not 

give a precise value for D~/D~4 , the information that is obtained is help- 

ful. For example, a theory of the dynamics based on the planar-spin model 

predicts that D~/D R = 0.36.(6) 

J 
I | I I I 

- -  4 "  - - 2 .  O 

S(q,~) 

' ' 4 ' 

~u / 2"/Y (MHz) 

Figure 7: The two-Lorentzian model of the limiting structure factor as 
suggested by the data from Figures 2 and 3. The shift ~2/2~ 
was taken to be 1.3 MHz and the half-width F2/2~ was taken 
to be 0.9 MHz. This model was used as a convenience in param~ 
et~zing the data. No one has seriously suggested that the 
true limiting structure factor should have this form. 

Near T X the shifts and linewidths that are used to experimentally 

parametrize the unknown spectral shape are comparable to or less than 

the instrumental linewidth of the spectrometer. Under these circumstan- 

ces we are not able to determine the limiting structure factor. However, 

we can make some general statements about its form. Both groups find 

that the limiting structure factor cannot be approximated by a single 

Lorentzian line. Fits by Vinen and Hurd using the hydrodynamic spectrum 

as a model "suggest strongly that S(q,~) still has a double peak at the 

point"(2). Our two-Lorentzian model indicates the same result, as is 

shown in Fig. 7. However, the data is not conclusive on this point. 

Hohenberg, Siggia, and Halperin(6) have calculated S(q,~) in the symmet- 

ric planar-spin model using no adjustable parameters. Spectra calculated 

from this theory were convolved with our instrumental profile and are 

compared with our experimental traces in Fig. 8. This theory does predict 
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Figure 8:Central portion of spectra recorded at PI=23.1 Bars. The 
contributions of first sound, stray light, and dark count 
have been removed from the spectra. In order, the temperatures 
are (T-T1): -5.5, -0.25, -0.01, 0.025, 0.16, 4.5 mK. The 
solid lines are theoretical spectra predicted by the planar- 
spin model convolved with the line shape of our instrument. 
The dashed line in (c) is the fit to a single Lorentzian. 

a two-peaked limiting structure factor, but the dip in the function at 

= 0 is only a few percent of its peak value. This theoretical spectrum 

seems to fit our data at T = T 1 as well as the spectrum in Fig. 7. The 

planar-spin model predicts the limiting spectral extent at T 1 very well; 

however, as shown in Figures 3 and 8, it predicts linewidths which are 

too small in the hydrodynamic regions. 
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C. First Sound 

Brillouin scattering allows the simultaneous measurement of the 

velocity and attenuation of high frequency sound waves, even though the 

attenuation may be quite large. The technique has the added advantage 

that one is studying sound waves which are present in the medium due to 

its thermal fluctuations. There is never a question of perturbations 

due to a transducer or of finite amplitude effects. The frequency of 

the sound wave studied is ~I = vlq/2~. The wavevector q is fixed in a 

scattering experiment, so the exact frequency of the sound wave varies 

somewhat as the sound velocity changes with the temperature. Figures 

9 and i0 show some of the data obtained by Vidal, Tarvin, and Greytak (16) 

on sound waves at about 960 XHz. The results cover the critical region 

as well as the hydrodynamic regions above and below T~. 
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Lower graph: The velocity of first sound at a frequency of 
about 960 MHz. The solid lines are the zero frequency veloc- 
ity whose absolute values are matched to agree with the data 
i0 mK below T~. Upper graph: The dispersion of first sound 
predicted by the low frequency model of Ref. 18. 
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Figure IO: Lower graph: The attenuation of first sound at a frequency 
of about 960 MHz. Upper graph: The attenuation predicted 
by the low frequency model of Ref. 18. 

Two mechanisms have been proposed to explain the critical behavior 

of low frequency sound in the hydrodynamic regions.(4) The first is a 

relaxation process associated with the mean value of the order parameter 

<4>. In many ways <4> can be treated as an internal thermodynamic degree 

of freedom associated with the superfluid. <4> adjusts itself to the 

local conditions of pressure and temperature. However <4> can only fol- 

low sudden changes in these conditions with a characteristic relaxation 

time T 2 which can be shown to be close to ~/v 2. It follows that the 

temperature dependence of T 2 would be roughly proportional to a-l. When 

the frequency of sound is in the vicinity of I/T2, the contributions to 

the dispersion and the attenuation normally associated with a relaxation 

arise. Since <4> is finite only for T < TX, the dispersion and absorption 

associated with this process occur only below TX. The second process 

thought to effect the sound waves is a coupling to the fluctuations in 
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the order parameter. These fluctuations, which become large near T~, 

interfere with the normal propagation of the sound wave. This process 

is not completely understood, but the attenuation and dispersion it 

produces are assumed to be symmetric about the transition temperature. 

These concepts were first applied to the analysis of sound propagation 

data near TX by Williams and Rudnick.(17) They showed that these simple 

concepts could fully explain their results at SVP. Recent extensive ex- 

periments by Pebell and his coworkers(18, 19) have shown that the two 

mechanisms also completely describe data taken at various pressures and 

He 3 concentrations. As a result the pressure and concentration depen- 

dence of the parameters entering the theories are now known. 

Unfortunately, these two processes which are so successful in 

describing the critical behavior of low frequency sound do not explain 

the results which we find at high frequency. The upper graphs in Fig- 

ures 9 and i0 show the dispersion and the attenuation predicted by these 

theories. The vertical scales are the same as those of the data shown 

in the lower graphs. The predicted dispersion is generally less than 

that which is observed, yet at low temperatures it is finite where no 

dispersion is found experimentally. The largest attenuation predicted 

does not even come up to the value at the lower end of the scale of 

measured attenuations. It is not surprising that basically hydrodynamic 

theories do not represent the high frequency data in the critical region. 

Even in the hydrodynamic region there are reasons to believe that these 

particular models will break down at high frequencies. As yet, however, 

there are no theories which can explain the observed critical behavior 

of high frequency sound. 

D. Intensities 

Both the total scattered intensity ll+I 2 (2) and the intensity ratio 

I2/i I (1,2) fall below their divergent hydrodynamic values inside the 

critical region, as was expected. In both cases the maximum occurs below 

T k in the vicinity of the temperature where q~ = I. There is as yet no 

theoretical prediction for the complete behavior of I 1 or 12 in the 

critical region. However, Bray(20) has shown that the energy density- 

energy density correlation function, which is related to these intensi- 

ties, must peak below rather than above T~. He also points out that 

the slope of these intensities as a function of temperature at T = TX, 

and the q dependence of the position of the maximum in the intensities, 

contain important information about the critical behavior. The experi- 

mental data are not yet complete enough to investigate this interesting 

suggestion. 
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Figure Ii shows I2/I 1 at 23.1 Bar and illustrates an interesting 

phenomenon. I2/I 1 appears to rise above the predicted value of y - 1 

before the critical region is entered below T~. This feature of 12/I 1 

was thought to be of spurious origin when it first occured in earlier 

measurements of Winterling eta/.(II) but not in measurements at a lower 

pressure by O'Connor eta/.(21) Now, however, both groups(l, 2) find a 

rise in I2/I 1 above y - 1 for data taken at pressures of 20.2 Bar and 

above. The data on 12/I 1 were extracted from high resolution Fabry- 

Perot interferometer traces in which some overlapping of the spectral 

features of first and second sound necessarily occured. This usually 

gives rise to no particulaT difficulty as long as the spectra can be 

fit to a model which includes all the spectral features. There is a 

remote chance, however, that there is some spectral feature which has 

been overlooked. Low resolution traces should be taken in the future 

with the sole purpose of obtaining precise data on this ratio. 

The work described here which was done at MIT was supported by 

the NSF under grants DMR7803017 and DMR7680895. 
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The original versions 1'2 of the dynamic scaling theory were limited to the extreme 

long wave lengths or equivalently the very small wave vectors. The striking predic- 

tions of the theory were the divergences in the thermal conductivity and the second- 

sound damping when the lambda point is approached from above and below, respectively. 

Both of these quantities were predicted to diverge as t -I~- where t = IT - T~I/T X. 

The early experiments of Ahlers 3 on thermal conductivity and of Tyson4on second-sound 

damping were in agreement with these predictions (when the critical behavior of the 

specific heat was properly accounted for). 

Renormalization group was introduced in critical dynamics by Halperin, llohenberg 

and Ma. 5 The equations of motion for the order paramete~ and any secondary variable 

that it may couple to, determine the dynamic universality class. Halperin, Hohenberg 

and Siggia 6 described liquid Helium in terms of the planar spin model. Appli- 

cation 6 of the renormalization group to this model yielded the familiar dynamic scal- 

ing exponents. The amplitudes of thermal conductivity and second-sound damping were 

expressed in terms of certain universal ratios. 6 Exponents for the correction to 

scaling terms were calculated. A single-loop self-consistent calculation of the 

density-correlation function 7 was also carried out. 

Turning now to the experimental side, high precision measurements on thermal 

conductivity as a function of t were carried out by Ahlers 8 at different pressures. 

The result was a small but definite (about 20%) deviation from the dynamic scaling 

prediction. The experimental divergence was stronger than that expected from the 

theory. Light scattering experiments were carried out by Tarvin, Vidal and Greytak 9 

at various temperatures above and below the lambda point. The light scattering di- 

rectly probes the density correlation function which, above the lambda point, is 

expected to be nearly Lorentzian with a half-width proportional to the thermal con- 

ductivity. Thus the spectrum above the X-point should shrink, as one leaves the 

critical region, corresponding to the t -~3 fall-off of the conductivity. 

Below the lambda point it is the width of second-sound peaks which should decrease as 

t -~3 outside the critical region. Tarvin et al 9 found that, above the lambda point, 

the width hardly changes and below, the width of the second-sound peak falls at first 
4 

but then rises slowly. The measurements of Tyson on the second-sound damping gave 

an amplitude which was five times higher than that obtained from the universal ratio 
7 

of Hohenberg, Siggia and Halperin. Thus, there were significant discrepancies be- 

tween the dynamic scaling predictions and the experimental observations. 



A possibility of Violation of dynamic ' scaling was discovered by DeDominicis and 

Peliti I0 when they applied the field theoretic renormalization group in the study of 

critical dynamics. It is convenient to picture this in terms of the SSS II model 

which has an n-component, non-conserved order parameter field (4) with O(n) symmetry 

and a n(n-l)/2 component conserved generator of rotations (S). The Fourier compo- 

nents have the equations of motion 

~i(k) : j~i ~ Sij(k - q)~j(q) (la) 

~ij(k) = ~ (p2 _ p,2)~i(P)~j~p' ) (Ib) 
p+p ' =k 

where the dot denotes differentiation with respect to time. Thus, each component of 

the order parameter is coupled to and perturbed by n-i components of the tensorial 

generator field. As n is decreased in this model, the perturbations are weakened, 

resulting in less Brownian motion in the order parameter. The increased value of the 

relaxation time y$1 produces more noise in the generator field, thereby increasing 

its relaxation rate YS and consequently shortening the duration of the Langevin pulses 

in order parameter dynamics. This feedback situation results in a kind of catastrophe 

that leads to a breakdown of dynamic scaling at a finite value of n-i for a ~iven 

value of D, the dimensionality of space. The curve along which this breakdown1 occurs 
12 

in the n-D plane was calculated to two-loop accuracy by DeDominicis and Peliti, 

Dohm and Ferrel113 and the present authors. 14 It was found that liquid Helium is on 

the "scaling" side of the boundary but close to it. Consequently it is possible to 

characterize Helium by a small value of w, the ratio of the relaxation rates of the 

order parameter and the entropy. Dohm 15 and the present authors 14 found this ratio 

to be 0(0.i). 

A consequence of the small value of w is the existence of a "slow transient ~ 

i.e., a correction to scaling term which has a small exponent of 0(w). This correc- 

tion term persists deep down into the critical region and hence the true scaling 

domain becomes practically inaccessible. It will be seen below that a further con- 

sequence of a small w is to give this slow transient a strong amplitude. This is 

related to the existence of a noncritical background for the thermal conductivity 

and the Onsager coefficient for the order parameter. 

We now turn to a study of this noncritical background, the importance of which 
16 . 

in understanding critical phenomena was first pointed out by Sengers and Keyes In 

their study of the thermal conductivity of a single component fluid. Using simple 
17 

kinetic theory, we have obtained an expression for the thermal conductivity which 

has both the critical and noncritical parts. A straightforward linearized Boltzmann 

equation treatment of the drift of the Helium atoms of mass m, density n, velocity v 

and energy s = mv~2 in a temperature gradient leads to the standard picture of the 

drift of the "hot" atoms opposite to the temperature gradient. These carry the heat, 

while the "cold" atoms constitute a counterflow in the reverse direction such that 
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the net mass current vanishes. 

where 

17 
The resulting thermal conductivity is 

1 n <T(~e)2> (2a) 
mT 

and T is the relaxation time. 

weighted according to the distribution function 

2 
F(c) = -~ c g'(s) (3) 

g(e) is the Bose-Einstein distribution function 

1 
g(s) B(s-p) (4) 

e - 1 

where ~ is the chemical potential and B -I is T times Boltzmann's constant. Thus, 

~e = s - <e> (2b) 

The angular brackets indicate an "average value" 

in this notation the average value <Q> of some quantity Q is the velocity-space inte- 

gral 

3n d 3 v F ( s ) Q  (5)  

w h e r e  h i s  P l a n e k ' s  c o n s t a n t .  

Now, wha t  i s  s p e c i a l  a b o u t  t h e  t - p o i n t  o f  H e l i u m  i s  t h a t  ~ ( s )  i s  a r a p i d l y  v a r y -  

i n g  f u n c t i o n  o f  s w i t h  a d i v e r g e n c e  i n  t h e  low e n e r g y  l i m i t  s + 0.  I t  i s  t h i s  d i v e r g -  

i n g  l i f e t i m e  t h a t  p r o d u c e s  t h e  c r i t i c a l  d i v e r g e n c e  i n  t h e  t h e r m a l  c o n d u c t i v i t y .  I n  

o r d e r  t o  decompose  Eq. (2a) i n t o  i t s  n o n c r i t i c a l  and c r i t i c a l  p a r k s ,  we a s sume  

t h a t  t h e  s t r o n g  e n e r g y  d e p e n d e n c e  o f  T i s  r e s t r i c t e d  t o  t h e  v e r y  s m a l l  e n e r g i e s .  For  

t h e  r e m a i n i n g  e n e r g y  r a n g e  we a s s u m e  t h a t  • i s  some smooth  f u n c t i o n  o f  s ,  s a y  ~B" By 

e x t r a p o l a t i n g  T B b a c k  i n t o  t h e  low e n e r g y  c r i t i c a l  r a n g e ,  we o b t a i n  t h e  b a c k g r o u n d  

c o n d u c t i v i t y  

XB = __n <~B(~S)2 > (6) 
mT 

What is left is the critical component 

= n (~e)2> (7) 
%c mT <(T - T B) 

By assumption, T - T B approaches zero rapidly and T - T B > 0 only in the very small 

energy range ~ << <c>. We can make the further approximation 

<e> = rs + ~ ~ Ts , (8) 

because the approach to criticality requires a very small ~. Equation (8) gives 

ns2T 

= - -  <(T - TB)> Ic m 

ns2T 
<T> , (9) 

m 

(~e) 2 ~ T2s 2, so 

proportional to the weighted mean of the relaxation time. The simplified version of 

Eq. (9) in the second line can be used if the function that is substituted for T(e) 

leads to a convergent integral. 
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In order to apply Eq. (9) quantitatively, we introduce the Bose-Einstein distri- 

bution from Eq. (4) and note that, in the range e << kBT , it is equivalent to the 

standard Ornstein-Zernike form for the order parameter correlation function at wave 

number p = mv/~, 

kBT 2m kBT/~2 
g(E) ~ (i0) 

E - p p2 + ~2 

This depends on identifying the square of the inverse correlation length as K2 = 

-2mp/,~ 2. The derivative of the B.E. distribution is 

kBT 
g'(s) = Bg(s) 2 

(s - p)2 

4m2kBT/4~4 
(ii) 

(pC + K2) 2 

Introducing the order-parameter relaxation rate, y~ = (2T) -I, and expressing the ve- 

locity in terms of the wave number, we get 

s l = 52 ~ 1 d3 p . _ _  (12) 
c kol (2~)3 (p2 + K2) 2 Y, 

This picture of a critical variation imposed on a noncritical background is borne 

out by the experimental data presented in Fig. i. It will be seen that, very close to 
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Fig. i Thermal conductivity near the l-point as a function of temperature. 
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the lambda point, there is the critical divergence. Away from the critical point, 

the behavior is fairly flat with a small rise farther away. The background %B is 

estimated to be 0.12 mw/cm°K from the following analysis of Ahlers' data. 

In what follows, we discuss Ahlers' data at 22 Bars, since the light scattering 

work of Tarvin et al. was carried out at a similar pressure and the two experiments 

can be linked up. 17 The first departure from noncritical behavior can be obtained 

by carrying out the integration indicated in Eq. (12) with y~ = B~(p 2 + K 2) , where 

B~o is the constant noncritical background value for the 0nsager coefficient of the 

order parameter. This yields 

Xc = 167 B~ 

[~_~Z] %1 t -~4 k]~l 2 - 

- 167 ~ (13) 

where, in the secondplstep, ~ = Ko t2/3 has been used. Thus a plot of the thermal con- 

ductivity against t --/3 should be linear when Eq. (13) is valid, i.e., for large values 

of t. The intercept on the %-axis will give X B and the slope will provide B~. Fig- 
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Fig. 2 Thermal conductivity as a function of t -2/3. 
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ure 2 shows such a plot. For small t -'° it is indeed linear, giving %B = 0.12 mw/cm °K 

and B 1 = 1.35 × 10 -4 cm2/sec. As t -2/3 is increased, i.e., as the lambda point is ap- 

proached, the data deviates more and more from the linear behavior as expected, but a 

parabolic form 

w 
1 = %B + (0.587 x - 0.0086 x 2) × 10 -4 cm °K (14) 

where x = (103 t) -~3 gives a satisfactory fit to the data over a fairly wide range. 

The solid curve in Fig. 2 represents this parabola. 

In the scaling region Eq. (14) is not the correct behavior for I. We shall 

return to the study of the scaling solution and corrections to it, but for now turn 

to Eq. (12) to see what functional form for y~ would produce a given %c" We assume 

that y~ is a function of the variable r = /p2 + <2 alone, whence Eq. (12) yields 

1 ~ dp [ ~ ] 2  y~l(r) 
c o [p2 + <2j 

= dr I - y l(r) 

K 

f m y l = d r  - ( r )  , ( 1 5 )  

C< 

w h e r e  CK i s  an e f f e c t i v e  c u t - o f f  t h a t  a l l o w s  t h e  f a c t o r  (1 - <2/r2) 3/2 t o  be  r e p l a c e d  

by 1. D i f f e r e n t i a t i n g  gq .  (15)  

dX 
c 

¥~ 1(c<)  ~ d~ (16)  

Thus ,  g i v e n  h e ( < ) ,  Eq. (16)  d e t e r m i n e s  t h e  o r d e r  p a r a m e t e r  r e l a x a t i o n  r a t e  t h a t  would  

p r o d u c e  s u c h  a X ( ~ ) .  Fo r  l a r g e  v a l u e s  of  <, X c an  be  o b t a i n e d  f rom Eq. ( 1 4 ) .  Sub-  
c C 

s t i t u t i o n  of  t h i s  i n  Eq. ( 1 6 ) ,  and f i n a l l y  t h e  r e p l a c e m e n t  o f  < by t h e  wave number  k,  

y i e l d s  f o r  t h e  n o n l o c a l  O n s a g e r  c o e f f i c i e n t  o f  t h e  o r d e r  p a r a m e t e r  a c o n s t a n t  b a c k -  

g r o u n d  v a l u e  and a l / k  r i s e .  The i m p o r t a n t  f a c t o r  i s  t h e  f a i r l y  l a r g e  b a c k g r o u n d  

v a l u e  w h i c h ,  c o u p l e d  w i t h  t h e  s m a l l  w, makes  t h e  c r i t i c a l  r e g i o n  more i n a c c e s s i b l e .  

The s m a l l  w c a u s e s  t h e  s c a l i n g  s o l u t i o n  of  t h e  o r d e r  p a r a m e t e r  O n s a g e r  c o e f f i -  

c i e n t  t o  be  s m a l l .  The b a c k g r o u n d  v a l u e  on t h e  o t h e r  hand  i s  l a r g e .  The c o n s e q u e n c e  

i s  t h a t  t h e  l e a d i n g  c o r r e c t i o n  to  s c a l i n g  - -  t h e  s l o w  t r a n s i e n t  - -  w i l l  h a v e  t o  be  

v e r y  s t r o n g  to  l i f t  t h e  s c a l i n g  v a l u e  a b o v e  t h e  b a c k g r o u n d  and t h e n  a l l o w  i t  t o  merge  

i n t o  i t .  The c o r r e c t i o n  to  s c a l i n g  b e i n g  so l a r g e ,  t h e  t r u e  s c a l i n g  r e g i o n  r e c e d e s  

f u r t h e r  away.  The l o w e s t  o r d e r  ~ - e x p a n s i o n  shows 14 t h a t  t h e  a m p l i t u d e  of  t h e  s l o w  

t r a n s i e n t  h a s  t o  be  e q u a l  and o p p o s i t e  f o r  t h e  e n t r o p y  and t h e  o r d e r  p a r a m e t e r .  Thus 

t h e  s l o w  t r a n s i e n t  d e c r e a s e s  t h e  t r u e  s c a l i n g  s o l u t i o n  f o r  t h e  e n t r o p y  r e l a x a t i o n  r a t e  

and  t h e  t h e r m a l  c o n d u c t i v i t y .  T h i s  i s  t h e  ke y  i d e a  i n  e x p l a i n i n g  t h e  o b s e r v e d  d e v i a -  

t i o n  o f  t h e  t h e r m a l  c o n d u c t i v i t y  d a t a  f rom t h e  dynamic  s c a l i n g  p r e d i c t i o n .  

A c c o r d i n g  t o  dynam ic  s c a l i n g  a f l u c t u a t i o n  of  wave number k i s  c h a r a c t e r i z e d  by 

the frequency D(k)k 2. The nonlocal "diffusion coefficient" is predicted to scale as 
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D(k) = ak -I/2 (the slowly varying logarithmic specific heat has been included in the 

definition of a). From our mode-coupling calculation to two-loop accuracy, we find 

s 

a = 7~2 n~Cp (17) 

J = Jl + J2, where Ji,2 are one- and two-loop convolution integrals that have to be 

evaluated numerically, n is the Helium atom density, s and Cp are the mean entropy 

and constant pressure specific heat per particle, both in units of k B. To = kBT%/P~ 

(where 2~Fis Planck's constant) is the basic reference frequency of the system. The 

origin of To can be traced to the equation of motion for the phase of the order param- 

eter. (The coupling to the temperature fluctuations is via the ratio kBS/@f.) 

We now introduce the order-parameter and entropy relaxation rates, y~ and YS' 
• ~ 

respectlvely, as Y~,S = a~,s k , where a~/a S = w and a~a S = a 2. Thus, a~ = a~w and 

a S = a/V~w. Dividing the rates by k 2 yields D~,s(k) = a~ S k -I/2 which is exhibited 

in Fig. 3 by the lowermost and uppermost curves, labeled =~SCALING." The horizontal 

line in the figure represents the noncritical background B~ and it is qui~e clear 

that the transients must lift the scaling solution to above the background value in 

the small k-range. The transient solutions can be described as the replacement of 

I ++ ++] a~, S by a~, S i + bsk + bfk . As explained earlier, the slow transient enters 

8.0 

6.O I 

~ 4.0 

a 

2 0  

S "'"'"''"''""'"" .... SCALING 
\.\ 

"\ 

SLOW 

"" ............................ SCALING 
I I 4 8 112 116 210 

k(lOScm -i) 

B~ 

I 

24 

Fig. 3 The 0nsager coefficients D S and D~ as functions of the wave vector. 
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with equal and opposite amplitudes for the order parameter and entropy. The fast 

transient, according to the lowest order E-expansion, has the same amplitude in the 

two cases. The exponents m s and ~f are universal, u s = w and for ~f it is reasonable 

to use the w = 0 value, e - 0.038 e 2 -~ 0.96. In the small k-range k ~f is vanishingly 

small and the slow transient suppresses D S according to 

ask_ I/2 I m ] Ds(k) = 1 - bsk s (18) 

This is illustrated by the middle (dot-dash) curve in Fig. 3. The label ~=SLOI,$ ~= sig- 

nifies that only the slow transient has been included in the computation of this 

curve. The logarithmic derivative of the correction factor in Eq. (18) corresponds 

to an effective incremental exponent -Az, where 

bs kms CORR 
Az = u s w NET (19) 

1 - b k ms 
s 

With w = 0.i, we see that a ratio of unity between the correction and the net amount 

raises the scaling exponent z = 0.5 by 20%. The k-dependent thermal conductivity %(k) 

is obtained from ~ = ncpD S. For ~ >> k, the k-dependence goes over smoothly to a 

K-dependence. With K = m t ~3 (where we use the conventional value ~o = 0.7 ~-I) 
o 

we can arrive at % as a function of t. The plot of %(t) vs. t undergoes the same 20% 

steepening described above and accounts satisfactorily for the discrepancy in the 

scaling exponent reported by Ahlers. A quantitative application of the above ideas 

gives the excellent fit 22 to Ahlers' data shown in Fig. 4 with 

t_113/ O. 067 O. 64 
= 21.6 ~ (I - 1.18 t + 26.1 t ) (20) 

in pw/cm °K. This fit has been used to obtain D S as a function of k which is shown 

by the curve labeled S in Fig. 3. The curve marked ~ represents the complete order- 

parameter Onsager coefficient and was obtained by using Eq. (16) and the substitution 

K = k in the final step. 

Writing Eq. (19) as 

Az = w CORR [SCALING ] 
NE~ : w[ ~ i_ (21) 

we can arrive at the following uniqueness theorem. For a given Az, Eq. (21) determines 

a unique w = w o such that CORR/NET = i or equivalently SCALING/NET = 2. Let w' be some 

other value of w satisfying Eq. (21). Using the fact that the scaling solution is 
i, 

proportional to w -~/2, we have 

leading to 

l wE ] w o = w' 2 - 1 

0 

(22) 

or w' = w o (23) 
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Fig. 4 Thermal conductivity % vs. reduced temperature t. 

The above proof depends on two assumptions: i) Helium lies on the scaling side 

of the boundary and ii) m s = w. The first assumption has been consistently supported 

by theoretical considerations. The approximation m s = w is fairly accurate for small 

as can be checked from general expressions given in Refs. 12, 14, and 15. 

To make contact with the light scattering experiments, we need to compute the 

fluctuation spectrum, which is the real part of the Green's function 

1 
= (24) 

GS -i~ + yS(~,k,K) 

Clearly we need the frequency-and temperature-dependent relaxation rate for this com- 

putation. A frequency-dependent thermal conductivity would give the necessary infor- 

mation and so, following Ref. 17, we present a derivation of Eq. (12) for % that 
c 

allows for frequency-dependent generalizations. 

The critical dynamic properties are associated with the thermodynamic fluctua- 

tions 

~p = -s~T + ! ~p (25) 
n 

These fluctuations of the chemical potential are produced by the fluctuations 6T and 

dP in the temperature and pressure, respectively. At the low frequencies of interest 

here, ~P can be neglected. According to the time-dependent Schr~dinger equation, the 

time-derivative of the phase of ~ is 
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$ d_i 1 6D (26) 
dt -If 

As we are interested in the response of liquid Helium to an applied thermal gradient, 

we can write 

~ = r'grad ~ = -r'F (27) 
~ ~ 

where F = -grad ~ is a constant vector force field, independent of the spatial coor- 

dinate r. After the lapse of a short time At, Eqs. (26) and (27) produce the phase 

change 

where 

i i 
A~(r) = ~ At F.r = ~ Ap-r (28) 

Ap = F At 

or p = F (29) 
~ ~ 

Equation (29) is nothing other than the standard superfluid equation of motion applied 

to the fluctuations in the condensate wave-function. It is now convenient to switch 

from wave mechanical to classical particle language, and to regard Eq. (29) as simply 

Newton's second law describing the acceleration of Helium atoms of momentum p. 

The steady-state linearized Boltzmann equation in the relaxation time approxima- 

tion is 

F-y g'(g) = -2y~ (k,K)Ag(k,K) (30) 

where Ag(k,K) is the perturbation in the distribution function, v = p/m is the parti- 
~ ~ 

cle velocity, and (2y~) -I is the mean particle relaxation time. Solving Eq. (30) and 

using Eq. (ii) for g'(c) gives 

4m2kBT~ ~'Y i 
Ag (31) 

~4 (p2 + ~2) 2y~ 

The critical mass current density is now found by multiplying Eq. (31) by v and inte- 

grating over all momentum values. Taking v in the direction of F and performing angu- 
~ 

far averages yields 

4 kBT% m [ d3p p2 jc 
= F -- (32) 

~m ~ 3 _if2 (27) 3 J (p2+~2) 2y~ 

We now invoke the basic feature of the two-fluid model -- namely the counterflow 

of normal fluid that must take place, equal and opposite to Eq. (32) in order that no 

net mass flow occur. This counterflow carries entropy at the rate of kBS per parti- 

cle, and hence heat at the rate of kBTlS per Helium atom. The density of heat current 

is consequently 

= -~rls ~at (33) 

The force can be written in terms of the applied temperature gradient as 

= -grad ~ = kBS grad T (34) 
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Substituting Eqs. (32) and (34) into Eq. (33) enables one to identify the conductivity 

from 

Q = -% grad T (35) 

and recover Eq. (12). 

To find the response to an oscillatory but spatially uniform temperature grad- 

ient at angular velocity ~, we need to include 3(Ag)/~t in Eq. (30). This is equiv- 

alent to replacing -2T~ by -2y~ + i~ and hence 

4 ~kBT%Sl 2 f p2 
%(~,K) = ~ ( k B ) - ~ : ' -  j 1 d3p (36) 

8~ 3 (p2+~2)2 -im+2y$(p,K) ' 

which is identical to the single-loop expression in the standard approach to critical 

dynamics for K >> k. The two-loop corrections can be obtained from the technique 
23 

presented here by considering the effect of persistence of velocities. 

The frequency dependence of Eq. (36) has already been studied in Ref. 24, where 

it was found that 

( %(~,K) 1 - i ~-r (37) 
x(0,K) 

~, = 20 /7r(i/4) . a,K3/2 
21 T(3/4) 

5.0 a~< 3/2 (38) 

o inlL that work.iL a~m 3/2 is the local order-- differs somewhat from the definition of 

parameter relaxation rate. As %(0,<) = K -Iz ~ o,-i~, it follows from Eq. (37) that 

%(~,K) is obtained from %(0,K) by replacing ~' by 

Z' = ~' - i~ (39) 

Therefore it is not necessary to regard %(~,K) as a function of the two separate 

variables ~,K. The two aspects are described by one combined scaling variable Z'. 

This makes it possible to extract the frequency dependence necessary for the analysis 

of the entropy fluctuation spectrum, with a minimum amount of formal theoretical manip- 

ulation. In fact, the frequency dependence is fixed by the critical temperature de- 

8 pendence found by Ahlers. 

Equation (20), which gives % as a function of t, will give the necessary frequency 

dependence when we eliminate t in favor of o' and make the substitution ~' ÷ Z'. The 

transformation t ÷ O' involves the use of ~ = ~o tL/3 and Eq. (38). It should be noted 

that Eq. (37) is not an exact representation of the integral in Eq. (36). Reference 24 

estimated the maximum deviation to be 20% in the very high frequency range. A detailed 

study in Ref. 17 showed that, in the frequency range of interest, the deviation is less 

than 10% and can be neglected. The single-loop frequency dependence to O(s), without 

the restriction < >> k, was carried out by Dohm 25 using the field theoretic renormali- 

zation group and the results were qualitatively similar to those in Ref. 24. Dividing 
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%(Z') by the specific heat gives a "uuiversal" critical entropy diffusion coefficient 

Ds(Z'), containing both temperature and frequency dependence. Ds(Z') takes olt the 

background value B S = 2.0 x 10 -4 cm2/sec as Z' becomes large. We note that there is 

a basic diffusion constant in the problem, namely 4~/m, which is equal to 

1.58 x 10 -4 cm2/sec. It is reassuring to see that both B S and B~ are close to this 

number. At this stage the entropy relaxation rate YS can be obtained by multiplying 

D S by the square of k = 1.79 x 105 cm -I, the wave number in the Tarvin et al. experi- 

ment. 

It is convenient to redefine the scaling variable Z' in the dimensionless form 

g = Z'/(a~k = ~- i~ (40) 

where ~ = ~/(a~k 3/2) (41) 

3/2 
and ~ = 5.0 I~l (42) 

a~k 3/2 is the scaling value of the order parameter relaxation at K = 0. From the above 

equations we find, in units of MHz, 

YS 10.35 kc~ 0 .067  0 . 6 4  
2--~ = --~-- (i - 0.582 Z + 0.0234 Z ) (43) 

where Cp is the specific heat per particle in units of k B. Over the intermediate 

range of Z-values, Cp can be fitted sufficiently accurately by a power law, which 

puts Eq. (43) in the convenient form 

YS 5.192 3.022 + 0.122 Z 0"381 (44) 
2~ Z0.263 Z0.196 

again in MHz. 

(Ys - Bsk2)/2~ is shown in Fig. 5. As explained in Ref. 17, the ~ = 0 X-point 

value of ~ is estimated at ~% = 0.34, which is illustrated in Fig. 5-by the downwards- 

pointing arrow close to the origin. This gives a zero-frequency rate of 3.1 MHz, as 

indicated at the top of the figure by the upwards-pointing arrow. The second down- 

wards-pointing arrow at the bottom left corner of the figure indicates the frequency 

at which the maximum in the spectrum of Re G S occurs (infinite resolution case, or 

r o = 0). As is evident, YS drops rapidly with increasing Z. This can result from a 

rise in temperature or from a change in the frequency variable. A finite resolution 

adds the width F o to Z, so that for a given temperature (i.e., ~-value), the whole 

frequency range is shifted to the right. This is illustrated in Fig. 5 by the two 

vertical dashed lines for K = 0 and < = k. In each of these cases the structure of 

YS to the left of the dashed line is inaccessible to observation. As the sharpest 

structure occurs at the smallest value of Z, it is clear why even a small value of 

Fo can have a big effect in washing out the structure in the spectrum. This picture 

applies, of course, also to the temperature dependence. A rise in temperature moves 

the accessible range of Z to the right, causing a loss of structure, with the spectrum 
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Fig. 5 The entropy relaxation rate above the background value vs. scaling variable Z 
for k = 1.79 x 105 cm -I. 

soon becoming Lorentzian. 

The self-energy function ¥S of Eq. (44) is used in Eq. (24) to obtain the fluctu- 

ation spectrum. To allow for the finite resolution of the instrument, a convolution 

of Re GS(W) with the resolution function R(~) has to be carried out. The effect of 

different resolution functions has been demonstrated in Ref. 17. A detailed compari- 

son with the spectra of Tarvin, Vidal and Greytak has also been carried out there. 

Tarvin et al fit£ed their spectra at different temperatures to double Lorentzian shapes 

and reported the results of their measurements in the form of two fitting parameters 

~2 (frequency shift) and F 2 (damping) as functions of temperature. The spectra in 

Ref. 17 were consequently fitted the same way and the temperature dependence of ~2 

and F 2 predicted. The comparison of F 2 above the X-point is shown in Fig. 6. 

The open circles are the experimental F 2 data points. The dashed curve is the 
7 

prediction of the planar spin model calculation of Hohenberg, Siggia and Halperin. 

The reason why their curve falls off so rapidly lies in their neglecting the fairly 

strong thermal conductivity background, as well as their use of too large a value for 

w. Theirs is the standard dynamic scaling prediction, which would lead to a vanishing 

half width at large values of <. The solid curve represents the theory with the back- 
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mental points. 

from Ref. 17. 

from experiment and theories. The open circles are the experi- 

The dashed curve is from Ref. 7, while the solid curve is 

ground effects built in. It uses the self-energy given by Eq. (44), and the parameters 

F 2 and ~2 are determined by matching the central value and curvature of the actual 

convolved spectrum with the similarly convolved double Lorentzian. The improvement 

obtained by incorporating the background effects is evident. It is also shown in 

Ref. 17 that the predicted and experimentally inferred values of ~ at the lambda 
2 

point are in good agreement. 

It is worth exhibiting the predicted lambda point spectra at two different scat- 

tering wave numbers. Figure 7 shows the spectrum for k = 1.79 × 105 cm -I (the wave 

number used by Tarvin et alO for three different resolutions. The infinite resolution 

spectrum, shown by a solid curve, has a pronounced structure. Almost all of the struc- 

ture is lost for a resolution of 0.75 MHz (dashed curve), while for Fo/2~ = 1.5 MHz 

the structure disappears completely. The latter, however, is the resolution of Tarvin 

et al. and the width of the curve allows for a satisfactory comparison 17 of the absolute 

scale of the spectral width in theory and experiment. 

Figure 8 shows the predicted %-point spectrum for k = 3.58 × 105 cm -I and the 

three different resolutions, Fo/2~ = 0, 0.75 MHz and 1.5 ~z. The F o = 0 spectrum is 

more filled-in than in Fig. 7 because of the larger value of ~%. There is no structure 

at finite resolutions. Though not useful for the purpose of detecting structure in the 

spectrum, this frequency doubling can demonstrate the validity of the considerations 

involving the background effects. Experiments at this higher frequency should again 

lead to a flat F 2 for ~ >> k, with a value four times as large as the present value of 
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i MHz. The conventional dynamic scaling would predict an increase by a factor of 

2/2only. 

The light scattering below T% is also fairly well understood on similar lines 22 

with the slow rise in the parameter F 2 being caused by the dropping specific heat. 

However, the large amplitude of the second-sound damping that was observed by Tyson 

still remains unexplained. 

As a final item we shall demonstrate how the light scattering experiments can 

determine the constant <o in K = Go t~3 with some knowledge of the scaling funcion for 

the specific heat. The value of G o used in all experimental and theoretical works is 
26 

the number obtained by Hohenberg et al. They used the series estimate for the uni- 

versal amplitude ratio connecting the correlation length to the singular part of the 

specific heat and the measured specific heat and the mean specific heat to obtain 

G o = 0.7 ~-I. To show how this alternate scheme works, we proceed as follows. 

The temperature dependence of the specific heat (C) near the lambda point is 

established to be logarithmic. 

arbitrary units, 

for 

We adjust the constants in such a way that, in certain 

C = -~n < 

G >> k 

(45) 

According to the usual scaling idea, the K-dependence will smoothly go over to a k- 

dependence, and in the critical region, 

C -~n(k/ko) (46) 

k o is a constant that will be determined by the general scaling function F(y), in 

terms of which 

C = -~n k + F(y) (47) 

with y = G/k 

Equations (45) and (46) are the necessary ingredients for a determination of G o. The 

experiments are performed at a fixed wave vector k, and the temperature (t) dependence 

of C for that value of k can be extracted from the intensity measurements. Normalizing 

the large G behavior to that expressed by Eq. (45), one can extrapolate to see where 

the value given by Eq. (46) is obtained. At this t, the value of G is clearly k/k o and 

hence determines G . 
o 

The basic task of the theory is to provide the number k o. To this end, one re- 

quires the scaling function F(y). For D = 4 the scaling function has been determined 

exactly by Bray 27 as 

y y  +4y, i +i ] 
The limiting values are 

F(y) = ~i y << 1 

t -~n y y>> 1 

(48) 

(49) 
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Using these limiting values to obtain the hydrodynamic and critical behavior of C 

corresponding to Eqs. (45) and (46) leads to the identification 

k = e = 2.718 "'" (50) 
o 

This scaling function is shown in Fig. 9. The dashed curve represents the simple 

C(y) 

\ 
\ 
\ 
\ 

• .. \\ 

\ \  1.0 1.5 2.0 2.5 5.0 

~. Y 

Fig. 9 Scaling function for specific heat vs. y = ~/k at D = 4. 

logarithmic behavior,-~n y valid for y >> i. The lower solid curve is a naive expecta- 

1 
tion for the scaling behavior -- namely - ~ %n(l + y2) __ which implies that going from 

hydrodynamic to critical region involves the replacement of K by k. The upper solid 

curve is the actual function F(y) of Eq. (48), and the dotted curve is the simple scal- 
1 

ing function f(y) = - ~ ~n(y 2 + e-2), suggested by Eq. (50). 

The calculations for D = 3 are more involved. Ornstein-Zernike-like functions 
28 

have been used by Stephen. A dispersion theory approach to the scaling function has 

been studied by Krol129 and more recently by Nicoll. 30 Preliminary results 30 indicate 

that the constant k o is equal to v. This is exactly true for n = -2 and in the spher- 

ical limit. The deviations for other values of n are expected to be of O(q). 
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TRANSPORT PROPERTIES NEAR THE SUPERFLUID TRANSITION AND 

NEAR THE TRICRIT!CAL POINT OF He3-He 4 MIXTURES 

H. Meyer, G. Ruppeiner and M. Ryschkewitsch 
Department of Physics, Duke University 

Durham, NC 27706/USA 

A short survey is presented on transport properties in liquid 

He3-He ~ mixtures under saturated vapor pressure. We discuss the mass 

diffusion D, the thermal diffusion ratio kT, and the effective ther- 

mal conductivity K. The theoretical predictions of singular behavior 

near the superfluid transition and near the tricritical point are re- 

viewed. New measurements of K and k T for dilute mixtures (S30% He 3) 

and for concentrated mixtures (between 60 and 70~ He3), carried out 

at Tokyo and at Duke Universities, are presented. These experiments 

show the predicted features, in particular the weak singularity in k T 

near the superfluid transition and the strong one near the tricritical 

point. Results of relaxation times obtained in the course of these 

measurements are discussed in terms of the coupled diffusion modes as- 

sociated with transport properties. 

I. INTRODUCTION and THERMODYNAMIC RELATIONS 

In his 1976 review article on experiments near the superfluid 

transition in helium, Ahlers I) remarked that the experimental i~ves- 

tigations of the transport properties of He3-He 4 mixtures are far from 

complete. Among the experiments described in detail in Ahlers' review, 

were measurements of the thermal conductivity of a X=0.15 He3-He 4 mix- 

ture 2) and of the mass diffusion D for X=0.10, 0.21, and 0.40 mixtures 

3) Here, X is the He 3 number concentration. The thermal conductivity 

in the normal phase shows a singular behavior that abruptly stops at 

T~, the superfluid transition temperature. In the superfluid phase, 

the temperature dependence is much smaller. Within the experimental 

scatter, D was found to diverge with a simple power law in (T-Tx) as 

T X was approached. Ahlers also pointed out that, although further 

theoretical progress was needed, the hydrodynamics of mixtures is well 

known 4-6). Predictions on transport coefficients by mode coupling 

theories had been made a few years before 7'8) 

In the last three years, attention has been focussed in more de- 

tail on transport properties in dilute mixtures and near the tricri- 
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tical point. The tricritical point terminates the critical (second- 

order) line of the superfluid transition and starts the (first-order) 

line that defines the coexistence region of two separated phases, one 

He4-rich and superfluid, the other He3-rich and normal. For conveni- 

ence, a phase diagram of the liquid mixtures under saturated vapor 

pressure is presented in Fig. i. We refer to the review by Ahlers I) 

for a detailed presentation of the static and dynamic properties of 

liquid helium. Therefore, the transport experiments presented there 

Fig. i. 

I I r i 

Helium Go$ 

5,C ~ r l h C O l  Lice 

4.C 

Lk:luid Helium I 

~2,( Lambda Line 

Helium I 

H e l i u m  Tt 

1.O 

Curves 

0 0.2 0.4 OJS 0.8 1.0 
X3 

The phase diagram for He3'He 4 mixtures at saturated vapor 
pressure. 

will only be briefly mentioned here. 

This article attempts to give a short review of experiments that 

lead to information on transport properties. It is organized as fol- 

lows. In Section II, several transport coefficients will be defined 

and appropriate thermodynamic relations will be quoted. Section III 

deals with the predicted singularities of quantities relevant to this 

article and reviews some recent experiments. The hydrodynamic modes 

in the normal phase are described in Section IV. Finally, in Section 

V, the most recent experiments on transport properties - most of them 

unpublished - are presented. These experiments are measurements of 

the thermal conductivity and the thermal diffusion ratio k T in dilute 
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(0.ISXS0.33) and in concentrated (0.6SXg0.7) mixtures performed respec- 

tively at Tokyo and at Duke Universities. Relaxation time measure- 

ments are also discussed. Because the analysis of the Duke results 

is not final, this article serves as a progress report. 

II. DEFINITIONS and RELATIONS 

The notation of Khalatnikov ~" m] and of Landau and Lifshitz 4" ] is 

used for the thermal conductivity K. The expressions below are in 

terms of X rather than the mass concentration c=XM3/M used in Refs. 4 

and 5. Here 

= (XM 3 + (1-X)M 4) (1)  

where M 3 and M 4 are the isotopic molar masses of He 3 and He 4 respec- 

tively. The transport coefficients which are dealt with in this paper 

are: 

i. The mass diffusion D. 

2. The thermal diffusion ratio kT. In the normal phase, under steady 
4,5) 

state conditions (no mass flow, i=0), k T is defined by 

kT _ VX ~4M3 (2) 
T VT ~2 

We consider the case only of one dimension where VX is the concentra- 

tion gradient and VT the corresponding temperature gradient. When a 

temperature gradient is established, the He 3 concentration becomes 

enriched near the colder part~ hence kT>0. 

The situation in the superfluid is more complicated since there 

is also a superfluid current from the cold to the warm end of the 

cell. Khalatnikov 5) shows that if we assume that the non-diffusive 

part of the He 3 mass flux is carried along by the normal component 

of the He 4, which travels with velocity Vn, 

VX M4M3 _ kT Vn XM3 
+ -- -- (3) 

VT ~2 T VT DR 

in the steady state where i+pcVn=0 (see Eqs. 24-52 and 24-55 of Ref. 

5). By making several hydrodynamic assumptions in the superfluid, it 

can be shown that 5) 

VT - X (4) 
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where (~X/SA)T,p is the molar concentration susceptibility, with 

A~3-~ 4 the isotopic chemical potential difference. In the limit of 

dilute mixtures, Eq. 4 becomes 5) 

VX XM 3 [I + ~o ~ ] 

where R is the gas constant and ~o the entropy of liquid He 4 per gram. 

In particular at T=Tk, where Eq. 2 is valid (see also below), k~ for 

dilute mixtures is independent of X. Using Oo=1.56 Joules/gr I'±0), 

one obtains 

lira k T : 0.57 (6) 
X÷0 

a value which compares well with experiment, as we shall see in Sec- 

tion V. 

3a. The thermal conductivity K in the normal phase. Here we mean the 

thermal conductivity measured under steady state conditions, i=0, in 

the presence of a concentration gradient. 

3b. The conductivity K s in the normal phase in the absence of a con- 

centration gradient. Of theoretical interest 1-~j is the flux 

J =~---(A-T -- )i, where Q is the heat flux In the absence of a 
T ~ ~T ~ ~ ~ 

concentration ~9~dient, ~T is given by 

where 

JT = -Ks~VT (7a) 

K s K+ ~ly~) ~4 k~D(VT)_ 1 -- 2 2 (7b 
T, P M3M 4 

K s is not easily accessible to observation. 

3e. The measured thermal conductivity Keff in the superfluid phase 

which, according to Khalatnikov 5), is related to K via 

Kef f = K + V-IDT(~X/~A)T X ~-~ g T [~X]T,p ~ (8 

As Papoular 9) has discussed, the term (Keff-K) in Eq. 8 is to be re- 

garded as associated with the extra heat flux proportional to the 

normal fluid velocity V n and is to vanish as the superfluid transi- 

tion and the tricritical point are approached. Hence, near T X or Tt, 

and in the superfluid phase 

T÷Tx, t T - N2 X (9 T, P P 
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III. PREDICTION OF SINGULARITIES and REVIEW OF EARLY EXPERIMENTS 

We briefly recapitulate here the prediction of the singularities 

in the susceptibility and in the transport coefficients. We compare 

these predictions with recent experiments giving k~, K, and D. 

i) The susceptibility (~X/~A)T, P is predicted II~ to show a weak 

singularity along the critical line, similar to that of Cp for pure 

He 4 at T~. As the tricritical point is approached, a cross-over to a 

strong divergence should be observed 12). The predictions are in good 

agreement with experiments 13-16). 

2) For__ the thermal diffusion ratio kT, the dynamic scaling (DS)7~ 

mode coupling (MC) 8) and renormalization group (RG) 17) theories pre- 

dict that the singularity of k T above T X is the same as that for 

(~X/~A)T, P. Hence, a weak singularity with a peak is predicted for 

k T in mixtures at the lambda line. There should be a cross-over into 

a strong divergence as the concentration becomes close to the tricri- 

tical one, Xt=0.675 , namely 

Critical: k T ~ (~X/~A)T,p ~ (s~) -~ ~-0.02 (10a) 

and 

Tricritical: k T ~ (~X/~A)T, P ~ st -I (10b) 

upon approaching along a path X=X t or along the coexistence curve o+ 

and a . Here 

s~ = (T-Tx)/T~ , s t = (T-Tt)/T t 

and the subscripts + and - denote the He3-rich and He3-poor branches 

of the coexistence curve. 

The behavior of k T below T X is predicted from Eq. 9. For concen- 

trated mixtures, numerical calculations using calorimetric data 18) 

show ~ ~(S/X)/~XJT,p to be a slow varying function, and hence kT~ (~X/~A) T 

should exhibit a sharp peak. For very dilute mixtures, however, the 

temperature dependence below TX is calculated with Eq. 5 to be much 

smaller than that above T~. 

The earliest experiments on k T were performed under non-station- 

ary conditions. The method adopted by Lucas and Tyler 19) utilized 

the convection velocity in a vertical column of a X=0.15 mixture. The 

NMR signal of He 3 was the probe for the concentration. These measure- 

ments showed conclusively the expected singularity in the normal phase, 

and a milder temperature dependence in the superfluid phase. Unfor- 
2O) 

tunately they did not yield absolute values for k T. Roe and Meyer 
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derived k T from the concentration relaxation of mixtures in the range 

0.6<X<0.7. They obtained all the data in the same arbitrary units 

and were able to normalize the results for one mixture using Eq. 4. 

This procedure yielded k T for the other mixtures. The results showed 

the weak singular behavior expected for the superfluid transition and 

also the strong divergence for the tricritical mixture X-X t as indi- 

cated by Eq. 10b. 

3) Mass diffusion. The predictions from both DS and RG theories 7'17) 

for the divergence along the critical line are consistent, namely 

D ~ s~ -1/B (ll) 

and this behavior has been observed in the isothermal concentration- 

relaxation measurements by Ahlers and Pobell ~). There is a difference 

between the tricritical singularity expected from the DS 7) and the RG 17) 

approach, 

D ~ ~t ½ (Ds) (12a) 

D ~ st I/3 (RG) (12b) 

The later prediction appears to be confirmed by the analysis of acous- 

tic attenuation experiments 21~', which in the "low frequency" limit 

(hydrodynamic regime) give 

D ~ ~t 0"32±0"I (13) 

Furthermore, the attenuation data analysis shows the cross-over of D 

from a divergent critical behavior to the tricritical confluent sin- 

gularity of Eq. 12b. 

4) Thermal conductivity. Predictions are for K and Ref f to be 

finite both in the critical and the tricritical regions. A micro- 

scopic calculation by Kawasaki and Gunton 7) shows that K s diverges. 

However, its combination with the second term in Eq. 7b leads to a 

cancellation of divergences in the first order so that K is finite. 

As Ahlers has remarked, "the theory seems to make no predictions about 

higher order singular contributions which must evidently be responsi- 

ble for the remaining singularity that is observed experimentally in 

K above TX ''1) 
For very dilute mixtures, two recent theories 22'23) predict K(Tx) 

as a function of X. Obviously for pure He4(1) the conductivity must 

tend to infinity as T X is approached. The dynamic scaling argument by 

Kawasaki 22) p r e d i c t s  K(Tx)~X -0"33, while RG c a l c u l a t i o n s  by Siggia  23) 
give K(Tx)~X-½. Experiments by Tanaka and Ikushima 22) can be repre- 

sented by the expression 
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-i 
K(T~) = 50.5X + 0.63X °'37 . (14) 

While the authors claim good agreement with Ahlers' data for X=0.152), 

there is a disagreement for K in pure He 4 24) The exponent 0.37 

quoted above is closer to Kawasaki's prediction 22) than Siggia's 23) 

However, if the analysis is restricted to concentrations less than 

0.5%, the possibility that the data can be represented by a power law 

~(T~)~X -½ within the experimental scatter is not excluded. Hence, 

this situation still needs to be clarified. 

Light scattering 25) and thermal relaxation experiments 26) in the 

superfluid phase near T t have also shown Kef f to be finite. From 

their relaxation time observations during second sound measurements, 

Ahlers and Greywal126) deduce K(Tt)=47 ~Watt/cm deg. The Rayleigh 

linewidth 25) could be expressed by the experimental relation 

F/q 2 = l. Sxl0-4st 0"95-+0"07 cm2sec-i (15) 

where q is the momentum transfer. This slow diffusive mode is given 

in the limit ~t÷0 by 9'25) 

F~/q 2 = VR (~A/~X)T~ P • (16) 

TX2 ~ (S/X)/~X]T~ p 

Because (~A/~X)T,p~E t its temperature dependence is consistent with 

the one observed for 2 s and hence K is constant. Upon using Eq. 4, 
o 

we obtain 

2 I -I 
-- ~ 2  " (17) 

st÷0 <s T T M3M4 

Using the value of K(T t) from Ref. 26, one finds ~ /q2=l.3xl0-4cm2sec-i 

This excellent agreement with the experimental value is somewhat for- 

tuitous, however, as will be discussed in Section V. 

IV. HYDRODYNAMIC MODES IN THE NORMAL PHASE 

In He3-He 4 mixtures, the dynamics of concentration and thermal 

fluctuations is given by two coupled differential equations 4). The 

solution of these equations yields two well known dispersion rela- 

tions 6'9) which we write, following Tanaka and Ikushima 27), as 
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F n D T + D - DT+D)2 - 4DDef f 
o - D with D = 
2 o o 2 q (18) 

r[ D T + D + 2 - 4DDef f 
2 - D2 with D2 = 2 

q 

where D has the same meaning as before, and 

D T : ~s/PCp, X , Def f = K/OCp, X (19) 

Since D o and D 2 are real, the eigenmodes are dissipative. Griffin 6) 

has discussed these two modes and concluded that in the superfluid 

phase, D O is again related to diffusion and is associated with the 

Rayleigh linewidth mentioned before, while D 2 determines the Brillouin 

linewidth of the second sound. In the case of slow relaxation of the 

fluid from an initial thermal gradient to a final zero gradient, the 

boundary value problem must be solved to determine the relative ampli- 

tude of the modes. The formal solution of this problem for well estab- 

lished experimental conditions has been worked out by Behringer 28), 

but is too lengthy to be presented here. 

Let us consider just the limiting cases for the two dispersion 

relations. 

a) Close to the tricritical point, where k T and D have singulari- 
2 

ties as given by Eqs. 10b and 12b, (~A/~X)T,pkTD diverges. Numerical 

estimations based on experiments show that for st<f0-3 , ~s>>K, and 

DT>>Deff>>D. Therefore 

DeffD KD (20a) 
Do D ~ K 

S 

1 VK ~A kT M -4 
T,pT 2 2 ~ s t (20b) 

M3M 4 

which is the same result as that for the slow mode rS/o q2 quoted be- 

fore in Eq. 16. The fast mode is characterized by 

2 
o68 

D 2 c D T z ~ ~-~ ~ s t 
M3M 4 T 

(20c) 

The situation in dilute mixtures near T 1 is quite different. D o 

is predicted to stay roughly constant and D 2 is expected to diverge 
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approximately like D~E~ -I/3, which is the only nonviscous transport 

coefficient having a strong divergence. 

b) Far away from the tricritical point and from the critical line, 

kT÷0 and KS+K , therefore 

~n/q2 = D , £ ~ / q 2  = D e f f  ( 2 1 )  

The thermal and mass diffusion modes are uncoupled. 

V. RECENT EXPERIMENTS ON THERMAL TRANSPORT PROPERTIES 

We now describe two very similar series of experiments that give 

simultaneously the thermally induced concentration gradient VX/VT and 

the effective conductivity K or Kef f under stationary conditions. 

Experiments on dilute mixtures (0.ISXS0.33) were performed at Tokyo 

University 27'29) " and those on concentrated mixtures (0.6SXS0.7) by the 

present authors 30-32) 

The design of the experimental cells used both at Duke and Tokyo 

is based on the same principle. The cells consist of two horizontal 

copper plates, separated by thin-walled stainless steel spacers. To 

each of these plates is attached a horizontal capacitor made of two 

thin perforated stainless steel discs. These capacitors, are used to 

measure the dielectric constant of the fluid at the top and bottom of 

the cell. Changes in X are calculated with the Clausius Mossotti 

relation and from the known change of the molar volume V with X. 

Matched thermometers inserted in the sides of the top and bottom 

plates allow measurements of the temperature gradient established when 

a small heater at the bottom of the cell is turned on. In Fig. 2, we 

present first the results for dilute mixtures at three molefrac- 

tions 29). It can be seen that k T diverges at most weakly, which is 

consistent with the expeetations~ Eq. 10a). Furthermore, the limit- 

ing value at T~ is only weakly concentration-dependent and kT(T~)=0.6 , 

which is in good agreement with the prediction by Eq. 6. In Fig. 3, 

the results for K in several mixtures are shown, and these exhibit a 

singularity similar to that first reported by Ahlers 2) for a X=0.15 

mixture . By using the data of Ahlers and Pobell 3) for D and their 

own results for k T and K, Tanaka and Ikushima 27) have shown that the 

diffusivity Do, defined by Eq. 18, does not diverge as TX is approach- 

ed. D2, however, diverges like (T-Tx) -I/3 irrespective of concentra- 

tion, at least up to X=0.3. These results are consistent with the 
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expectations mentioned above. The tricritical behavior is quite dif- 

ferent, as we will discuss below. 

Fig. 4 shows the results 30-32) for concentrated mixtures in the 

normal and in the superfluid phase, represented respectively by k T and 
, 

by kT, the latter defined by 

, 

kT VX M4M3 kT VnXM3 
- - + , (22) 

T - vT ~2 T wD~ 

since it is VX/VT that is actually measured. From our previous dis- 
, 

cussion, it follows that kT+k T as T t or T X is approached. For clarity, 

results for a number of other mixtures have not been shown. We note 

the sharp peak at TX~ which is consistent with expectations, and the 

steady increase of k T as the phase separation is approached. These 

results can be compared with those in Fig. 3 of Ref. 20 that show the 

early data obtained from a transient method. The improvement achieved 

since then is quite striking. In contrast to the case for very di- 

lute mixtures, the conductivity K shows only a weak variation with 
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Fig. 3. 

The thermal diffusion ratio k T versus T-T~ for three mixtures, 
on a semi-logarithmic scale. After Ref. 29. 
The effective thermal conductivity K plotted versus T-T 1 in 
mixtures of various concentrations. After Ref. 22. 
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Fig. 4. The thermal diffusion ratio km and the effective conductivity 

K for T>T X and the correspondlng propertmes k T and Kef f for 
T<Tx in concentrated mixtures. The conductivlty units are 

~Watt/cm deg. 

temperature near the transition. Only one representative curve for K 

is shown, since very similar values have been obtained for the other 

mixtures. We note that for the tricritical mixture, we find K(Tt)= 

80±5 ~W/cmK, a value that is in disagreement with that inferred from 

relaxation time measurements 26), K(Tt)=47 ~W/cmK. 
Let us next examine the results for the "tricritical" mixture 

with X~Xt=0.675. The logarithmic plot in Fig. 5 shows that k T can be 

taken as 

k T = kT, sing+ kT,reg (23) 

where the subscripts denote "singular" and "regular". 

analysis gives 

kT,sing = 5.0xl0-2xe~ 1"0 

kT,reg = 0.6 

A preliminary 

(24) 

In the same Figure, data are shown for mixtures (X>0.673) at the co- 

existence curve ~+ on the normal side. Here again, the same power law 

for the singular term is obtained, in excellent agreement with theo- 

retical predictions 7'17) 
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In Fig. 4, we note that for each mixture there is a shoulder in 

the k T curve above TX and above T t. At the temperature of this anom- 

aly, marked by T A for X=0.603, the conductivity shows a slight anoma- 

lous temperature variation. The locus of TA(X) for all the mixtures 

coincides with the temperature below which Gearhard and Zimmermann 

found the onset of superfluid flow in films through porous glass 33). 

Fig. 5. 
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The thermal diffusion ratio as a function of the distance 
(T-Tt)/T t from the tricritical point for the mixture X=X t 
and along the coexistence curve o+ on the He3-rich side. 

Hence, we attribute the shoulder in k T to this phenomenon, and suggest 

the following mechanism: During an applied temperature gradient, there 

is a continuous flow of superfluid He 4 along the stainless steel wall 

Of the cell towards the warmer region. Hence, the concentration gra- 

dient VX is enhanced. Steady state conditions are reached by a con- 

tinuous diffusion of He 4 back toward the colder end through the cen- 

ter of the cell, and as a result the net vertical flow of He 4 is zero. 

The enhancement of k T due to film flow is the regular term in Eq. 24, 

as can be seen by inspection of the data in Fig. 5 for g>10 -I. 

We now examine the weak singularity of k m or km at T X. Fig. 6 

shows a comparison between k T and the susceptibility 16) (~X/~A)T, P 

close to Tk for the mixture with X=0.62231). As expected from pre- 

dictions, the behavior is very similar, although the k T peak tends to 

be less sharp. This rounding may well be caused by the smearing out 

of the transition by the non-zero thermal gradient in the mixture dur- 

ing the measurements. In Fig. 6b, we show the ratio (VX/VT)/(~X/~A)T, P 
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from experimental data and compare it with the quantity~ X~(S /X) /~X ]T ,p____  

calculated from the calorimetric measurements 18j. Strictly speaking, 

this comparison is only valid for the superfluid phase. The error 

TO 

k T 

] ,o - -  _ . - I - #  t / I 0  

• 
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Fig. 6. a) Comparison between k m and the susceptibility 16j ~ (~X/~A)T, 
in units of (mole/JoUle) for the mixture X=0.622. P 

b) Test of the Khalatnikov - relation, Eq. 4, with data for 
the mixture X=0.622. 

bars show an estimation of possible systematic geometric uncertainties 

in both susceptibility and (VX/VT) measurements. According to 

Khalatnikov's theory 5), the two curves in Fig. 6b should coincide. 

Considering the assumptions made in the theory and the possibilities 

of systematic errors in the various experiments, the agreement is con- 

sidered to be quite satisfactory. However, there is considerable dis- 

agreement for (~X/~A) T near the phase separation curve ~ between the 

g r o u p s l 3 , 1 4  ' - results from various 16) and this matter still needs to 

be clarified. 
, 

We note from Fig. 4 that our k T data along ~ can be represented 

roughly by 

k T = (i.0 -+ 0.2)1%1 -I (25) 

Let us briefly come back to the light scattering experiment by 

Leiderer et a125). If in their analysis we use our value for K=80 

pW/(cm K) then, with X~(S/X)/~X]T,p=6.5 Joules/mole K, 

3.1i~tl (from Ref. 14) inserted into Eq. 16, we obtain 

/qZ=2.2xl0-4st cm2/sec in fair agreement with the experimental value, 

Eq. 15. But if we use Eq. 17 together with Eq. 25, where we assume 
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kT÷k T for st÷0 and the same (aX/aA) T as before, then ~/q2=8xl0-4st 
2 

cm /sec, in disagreement with experiment. 

Finally, we discuss the relaxation times T(VT) and T(VX) that are 

measured by observing the establishment or the decay of VT and VX 

after switching the heat current on or off. In Fig. 7, we show the 

results for the tricritical mixture X=Xt=0.675. Both temperature and 

concentration gradients relax with the same time constants, which in- 

dicates strong coupling via k T (see Section III). We have used the 

available data for the quantities entering in Eq. 18 to calculate the 

inverse diffusion rate Dol and D~ I. Because in the limit of small st, 

Do~e t and D2=e~0"68 , it is obvious that the slow mode is observed. 

We have estimated the corresponding relaxation times by setting q=w/d, 

namely 

= , (26) 

Fig. 7. 

I 0 0 0  

50C 

Z- 

(sec) 
tOG 

I' I ~ i l l , , l  , , i i l i l l l 

Relaxation time in o He 3- He 4 
mixture. X - X  t =0 .675  from 
establishment oi" decoy o f :  ~ T  • 

Colculoted 

1010_3 I I ~ I , , 1 [ ]  i i * , I , , , i  
10-2 10-1 

(T-T t) / T t 

The relaxation times T(VT) and T(VX) characterizing the 
establishment or decay of the concentration and temperature 
gradients, respectively. The mixture has a concentration 
X-~Xt and the solid line is calculated from Eq. 18 as explain- 
ed in the text, and normalized at ct=10- to the data. 

where d=0.28 cm is the height of the conductivity cell, and we find 

T(calc.)/T(obs.)=I.5 which is a good agreement considering the geo- 

metric uncertainties. Hence, we feel justified in normalizing the 

calculated curve to the experiment, and this is done arbitrarily at 

et=10 -I The result is shown in Fig. 7 and the agreement over the 

whole temperature range is very satisfactory. 

An interesting situation that illustrates the coupling by k T of 
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Fig. 8. The same relaxation times for the mixture X=0.603 showing 
the decoupling of the thermal- and concentration diffusion 
mechanisms above TX=I.09K. The locus of the k T "shoulder" 
is indicated by T A. The solid and dashed lines are simply 
a guide to the eye. 

the diffusive modes is shown in Fig. 8 for the mixture X=0.60. For 

sufficiently large kT, both thermal and mass diffusion are coupled and 

show one common relaxation time. Here T is an increasing function of 

k T since it reflects qualitatively the same temperature dependence. 

However, above T X at the same temperature where the "shoulder" in k T 

is observed, k T becomes small enough for the relaxation processes to 

decouple, giving a fast thermal- and a slow mass diffusion. The anal- 

ysis of these processes, including the calculation of the amplitudes 

for the slow and the fast modes will be reported elsewhere in collab- 

oration with R. P. Behringer. 

In conclusion, there has been some increasing activity on the 

thermal transport phenomena in mixtures, with exception of the viscos- 

ity. In general, the preliminary analysis for experiments near the 

tricritical point shows good agreement with expectations from theory, 

but a number of intriguing questions remain, and more will surely 

come up as a more careful analysis of the results is carried out. 
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AND TRICRITICAL DYNAMICS APPLIED TO HELIUM 
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Abstract Renormalization group calculations for the critical dynamics 

of liquid Helium and of He3-He 4 mixtures are reviewed. The role of dif- 

ferent fixed points in determining the asymptotic behaviour is discus- 

sed. Emphasis is laid upon ambiguities in extrapolating results of 

d=4-~ calculations down to d=3. 

W W W 

The aim of my talk is to review the successes of renormalization 

group (RG) calculations on the critical dynamics of Helium and to point 

out that some problems still remain to be settled, which will keep us 

busy for some time still. 

The very first work on critical dynamics via RG by Halperin, Hohen- 

berg and Ma [I] showed that RG could indeed be applied to the problem 

of critical dynamics, provided that a suitable model evolution equat- 

ion be chosen. This equation should be able to reproduce the hydrodyna 

mical features of the physical system under consideration, which mode- 

coupling theories and dynamic scaling theories had shown essential to 

determine the dynamic behaviour [2] . Such a model equation should be 

able to satisfy the following requirements: 

- it should explicitly contain all physical quantities ("fields") 

which have such a slow evolution to be able to contribute to the criti- 

cal slowing down; this includes the order parameter and the conserved 

quantities; 

- it should represent the effect of non-Gaussian equilibrium fluct- 

uations of these quantities ("static coupling") as well as the effect 

of Poisson-bracket relations among them ("dynamic reversible coupl~ 

ings") and of whatever off-diagonal Onsager coefficients are allowed 

for by symmetry requirements. 

Halperin , Hohenberg and Siggia [3] (HHS) were able to introduce on 

the basis of these requirements a model evolution equation which still 

stands as the basis of our understanding of this problem. This equation 

describes the universality class to which liquid Helium at the ~-line 

and a planar antiferromagnet in an external normal magnetic field be- 

long. It contains explicitly the dynamics of the order parameter F 
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a complex quantity (the condensate wavefunction for Helium, the stagge 

red magnetization in the easy plane for the antiferromagnet) , and of a 

scalar conserved quantity I'll (the normal magnetization for the antifer 

romagnet, a linear combination of energy and mass density for Helium); 

the conservation of energy is not taken into account. 

The equations are [3] 

- Ao - -  - ° T "  % 

where  

~o ÷ I m= +~om i t l  z] (3) 

is the Landau-Ginzburg functional, and the Gaussian noise fields ~,~ 

have zero mean and correlation functions: 

The q u a n t i t i e s  ~ , Am a r e  " b a r e "  t r a n s p o r t  c o e f f i c i e n t s  and t h e z r  

a p p e a r a n c e  i n  b o t h  eqs .  ( I ) - ( 2 )  and ( 4 ) - ( 5 )  g u a r a n t e e s  t h a t  t h e  e q u i l i -  

b r i u m  p r o p e r t i e s  o f  t h i s  mode l  a r e  t h o s e  d e r i v e d  f r o m  t h e  L a n d a u - G i n z -  

bu rg  f u n c t i o n a l  ~ v i a  p u r e l y  s t a t i c  m e t h o d s .  The f i r s t  t e rms  i n  e q s . ( 1 )  

(2) r e p r e s e n t  t h e  dynamic  e f f e c t  o f  t h e  s t a t i c  c o u p l i n g s  o f  + w i t h  

i t s e l f  ( p r o p o r t i o n a l  t o  u o) and o f  ~ and r}1 ( p r o p o r t i o n a l  t o  ~o ) . 

If they were alone the model would reduce to a purely relaxational 

model: model C of Halperin, Hohenberg and Ma [I] . This is a rather 

pathological model (see also Br~zin,De Dominicis [4] ) whose patholo- 

gies we shall not be completely able to avoid later. 

The second term in eqs. (I)-(2) represents the effect of the Poisson 

bracket relation between ~ and m: in Helium, this corresponds to the 

of the condensate wavefunction + in the complex plane at precession 

a speed proportional to the chemical potential ~ , conjugate to the 

conserved quantity m. This appears physically as the Josephson effect: 

the phase of t precesses according to 

de 
: . a - 6  I /  



1 g2 

The appearance of an imaginary part, ibo, in the kinetic coeffi- 

cient of eq. (I) is a reminder of the Poisson bracket relation between 

complex conjugate. and its 

It is easy to see that eqs.(1)-(5) contain the relevant hydrodyna- 

mic features of liquid Helium [5 , 6] : in particular they contain be- 

low T c a propagation mode ("second sound") with frequency 

where ~m is the static susceptibility of the m field (related to the 

specific heat and the compressibility in Helium) and ~ is the stif- 

fness constant, related to the coherence length below Tc, ~_ , 

= (9) 

Above Tc, there are two relaxing modes: the conserved field m has 

a diffusive mode with frequency 

:. kt (1o) 

the order parameter relaxes to its equilibrium value with a frequency 

which is finite as k-~ 0. 

The fact that the second sound velocity c is given (eq.(8)) in 

terms only of go and of static quantities has an important consequen- 

ce: if the frequency-dependent correlation functions obey dynamic 

scaling around Tc, then the critical exponents for ~e~ , ~£~ should 

be given only in terms of static critical exponents[6,7] . One can de- 

fine a dynamic critical exponent z via 

(~(~, T-To)= ~ ~ ~'~ (k~(T-T,)), (12) 

where (~ is the characteristic frequency of any fluctuation and 

is the coherence length; then 

a 

where 

(13) 

= max (~, O ) is the exponent for the divergence of the spe 
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cific heat. At d=4-6 one has therefore 

(14) 

~-"~ (15)  

Halperin, Hohenberg and Siggia [3 ] first showed how these results 

could be obtained within the Wilson renormalization group framework 

and how the difficult problem of handling the corrections to asympto- 

tic behaviour,essential for an understanding of experimental data, could 

be handled. Since the Martin-Siggia-Rose (MSR) [8] formalism allows us 

to cast the dynamics expressed in eqs. (I)-(5) in field theoretical 

form, the whole apparatus of "standard"~renormalization theory becomes 

available [9, 10 ]. This allows for a systematic treatment of higher 

orders in the ~ expansion, which appears crucial for the interpreta- 

tion of the behaviour of helium in three dimensions. 

The formalism may be simply expounded, although its justification 

and the corresponding computations are far from trivial. The most con- 

venient framework is the use of dimensional regularization and mini- 

mal subtraction procedures [11], which simplify the computations by 

allowing for an automatic Separation of static and dynamic properties 

of the renormalized quantities and by reducing the need of computing 

complicated momentum-dependent integrals. 

In this framework an arbitrary normalization momentum F is intr£ 

duced, which allows for the definition of dimensionless renormalized 

couplings: 

K d U= = if6 = = C z =  Iz, 1, (16~ 

K, 92/C^oro)= z,  ,,,, 
2 2 )~ 

K .  = if" z, . ,  (18) 

where the renormalization factors Z are functions of ~ and of renor- 

malized quantities, singular as ~90 , in order to remove the logari- 

thmic singularities which appear in a four-dimensional calculation of 

the correlation functions of interest without a cutoff [11] . The fac~ 

or K d = ~ (~)~Z ( ~ d / ~ ( ~ )  is introduced for convenience. 

To remove fully these singularfties it is also necessary to define re- 

normalized transport coefficients and fields according to: 
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Uo "s = 7__ r 19) 

20) 

21) 

and 

q, = 7 ,  i ' . ~ ,  

rn = Z~am~ , 

22) 

(23) 

plus the corresponding ones for the Martin-Siggia-Rose conjugate fields. 

The arbitrariness of the normalization momentum ~ entails a Callan 

-Symanzik equation for each of the "observable" correlation or respon- 

se functions of interest. If we consider for instance the Fourier tran 

sform of the response function for the order parameter, ~ 

R, (~-~', ~-~') = ~ <~¢~,~>/~Rc5', e'), (24) 

h(x,t) is a field which appears in a term -j~gK ¢ ~ _ . t  - ~ % ( ~ , ~ ] ~ . ( ~ , ~ ]  where 

in the Landau-Ginzburg functional, then we may define the renormalized 
K 

response function R~ via: 

R , ( k , - ~ ;  ~ , . ,~ , . ,~ .  r./^. 6 . ) =  r o  J J 

K 
= Z, I, R, ( k , - ~ ,  ~.,v, t~,~,  ~';t") ; (2s) 

and R R satisfies 

{ 
e 

~-~ - tqt R ,  = o .  (26) 

We have here introduced the exponent functions qe ' ( e=' ~'' ~11'1, % ~)as 

d 
= e. z e (27) 

and the Wilson functions. W~ (~ : u, f, v, w, b) as 
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W~ = ~ ~ ~ ; 1281 

the derivatives are understood to be taken at fixed bare parameters. 

As it is well known, the asymptotic critical behaviour is determined 

by the stable fixed points of the RG flows: i.e. by those values ~ 

of the renormalized parameters ~ = u,f,v,w,b, for which 

and the "stability matrix", i.e. the matrix 

II we,,. II -- ll we/ ,  I I ,  

has all its eigenvalues ~ positive. These eigenvalues are the subcri- 

tical exponents and govern the corrections to the asymptotic behaviour 

each being related to a term vanishing like ~-~)~ o 

One readily obtains [4] that the quantity ~ = u - 3%;" goes to the 

same fixed point value as in the n=2 Landau-Wilson model for the sta- 

tics: 

.,,~ 3 
(31) 

whereas ~ goes to two different fixed points depending on the sign 

of the specific heat exponent ~ : 

0 i~ ~ <0~ 
'la T~ = (32) 

# 0  i~ ~ > o .  
~f v ' # O  one  r e a d i l y  o b t a i n s  ~ = - ~ / ~  . S i n c e  i t  i s  known e x p e r i -  

m e n t a l l y  [12] that ~ is negative (though very small) for Helium, the 

relevant fixed point value appears to be v ~= 0; the smallness of ~/9 

means however that this asymptotic value is reached exceedingly slowly, 

so that a careful treatment of the corresponding corrections is made 

necessary [3] . The dynamic Wilson functions are 

(33) 

(34) 

and Wb, which for ~0 yields a stable value of b at bX=0. The fact 

that only Mr" ~^ and ~ appear in the expression for Wf is for- 

ced upon by the Josephson relation (6) which may be interpreted to 
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mean that 

Z~ 7~12 
(35) 

from which (17) may be seen to imply (33). It is then seen that Wf=0 

implies either f~ = 0-which is ruled out by stability requirements - 

or 

where ~ are the fixed point values of the exponent functions. 

The second Wilson function (34) leaves us with two possibilities 

for the fixed point value of %@" : 

(a) ~" { 0 , which implies q~ = q~ 

(b) ~W= 0 . 

The two prossibilities correspond to two different asymptotic beha 

viours of the kinetic coefficients. The Callan-Symanzik equation im- 

plies that the asymptotic behaviour of the kinetic coefficients for 

T ~ T c is given by: 

~eff ~ ~ -~; - ~  (38) (37) 

~eff ~ -~-~m 

where 

function. 

In case (a) we have therefore, for ~ < O 

is the critical exponent of the (static) correlation 

39) 

which implies 

40) 

41) 

also obtained from the phenomenological dynamic scaling theory L6,7 ~. 

It is therefore warranted to call this fixed point the dynamic sca- 

ling fixed point. 

In case (b) we may define an exponent ~%~ by: 
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<,><,,. : -  12, (42) 

and we obtain instead of (40) 

r,~¢ ~ ~I -~-'l-<<>:/:, 
and instead of (41) 

(43) 

~ / ~  + 

A~t ~ ,~ - ~  . (44) 

In this case there appears to be a breakdown of the full homogeneity 

Qf frequency-dependent correlation functions near the critical point: 

the corresponding fixed point is referred to as the weak scaling one. 

It is interesting to note that the asymptotic behaviour for the sec- 

ond sound velocity obtained from dynamic scaling, 

C c(: ~ 1-- J" 
(45) 

GP 

bolds good in both cases. 

Since it appeared experimentally [12, 13] that the divergence of 

A eff was indeed stronger than expected from dynamic scaling, atten- 

tion was drawn on the possibility that the weak scaling fixed point 

could be the relevant one for Helium (De Dominicis and Peliti ~i0~). 

In order to see which of the two possibilities is the actual one, 

one has to discuss the stability of the point (b), which is related 

to the sign of the difference qr-~" For the model we are discus- 

sing we obtain to one loop order 

= - ~ / C ~ + ~ ) >  4~) 

Gh = _ f / . ~  

One has therefore at ~= O, to lowest order, 

Gr- i.l,,= - ~I~ .,'o, 

and it may seem that this point is definitely instable. If we 

take~W~ 0, eq. (34) implies 

47) 

48) 

now 
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which together with (33) yields 

qr '1 (50) 

which may be seen to be equivalent to (13). One may then exploit the 

knowledge of the fixed point values of f, IA~ to compute universal 

combination of coefficients [3], shape functions [14, 15], and other 

universal quantities. 

One may however suspect that the weak-scaling fixed point ~= 0 

has been disposed of with undue haste. A similar thing happens in 

the statics when one computes the specific heat exponent ~ out of 

the E -expansion. To lowest order, for one model, ~ = 0.{ ~ , which 

is positive ; to next order ~ = 0 , ~ -  0 . ~  E ~ and the estimation of 

the actual value of ~ becomes extremely dependent on the way we 

treat the series. In fact we know that ~ is negative, but very 

small, and that it is difficult to hit near the actual value by just 

manipulating a few terms of the E -expansion. 

In this case it is more convenient to generalize the model to 

a n-dependent one and to exploit all the evidence we may get from 

this n-dependence to understand what happens for the real system. The- 

re is an excellent discussion by Dohm [15] of how this can be made in 

the present case. We set v=0 from the outset, since as we discussed 

earlier this appears to be the relevant fixed point value for Helium. 

We then have at least two possible generalizations of our model to an 

n-dependent one: 

(a) the antiferromagnetic (AF) model o;~ Sasv~ri, Schwabl, Sz~pfalu- 

sy [16,14 ]: ~ is a n-dimensional vector, m a n-rank antisymmetric 

tensor, whose (~) component generates rotations of ~ in the (~) 

plane; 

(b) the "Helium" model (He) in which ~ is a n/2 dimensional com- 

plex vector, and m is a scalar which generates rotations of each com- 

ponent of ~ in the complex plane. 

Another generalization, due to Halperin [17] , introduces a field 

which generates rotations which mix up complex components of + : but 

it has less relevance for our problem. 

If we were able to perform exact calculations, all results obtained 

for these two models should coincide for our case (n=2) . We may take 

therefore any discrepancies as an indication of the inherent incerta- 

inties of the extrapolation of the 6-expansion. 

A two loop calculation of the relevant exponent functions yields 

[10,15]: 
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(AF): 

(He): 

where 

and 

= > (51) 

q^= -~14"~ + ¢~LC,~'), <54) 

'l" "~" C~'~  ) 
r = /,Cn+i)~ ~ -_y. ~ (55) 

I%-£ I G.Ar C'wr) - ~,c~,,,w)~ ['1÷C~-n)w'] (~.4-2,w-) e"?c~"'w>~,2~- 

+ (4÷,,w-) , , , . ~  + ~. (~.~..e~41s- 6) c4+,wr) + 
+ CF%-4) q~r] , (56) 

~C%;) = 4 { 9 C4+~¢)~ 
g(4÷~y)~ 4(4+~w) Wr(2,~)+H(4÷n)(&~)(4+~)÷ 

- (4+2h)kr- (~+2h)} , (58) 

(59) 

In order to understand whether ~= 0 or not for e =I; n=2, we look 

for the boundaries ~ ( ~ ) which separate the stability region of 

the weak scaling fixed point ~= 0, from that of the dynamic scaling 

point ~0. For the "Helium" models one readily obtains [10,15] fixed 

that 

_ _- 

is, to first order in ~ • the common boundary crossing which in the 

sense of decreasing n's the weak-scaling point destabilizes and the 

dynamic scaling fixed point takes over. 

For the AF models, due to the presence of a term proportional to 
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~ in L ,the situation is less clear [18] . There appear to be 
AF 

two boundaries: the first one 

3 
mCA)~& ) = ~ + ~ E + Oce 2) , (61) 

= + - ÷ = 0.4z (62) 

is the line crossing which towards higher values of n the weak-scaling 

fixed point destabilizes, the other, 

6 c 

is the line,crossing which the dynamic scaling fixed point becomes 

stable. The two leave a region, exponentially small as E~0, in 

which both points are stable: which one is chosen by the actual sy- 

stem will depend on the details of the original interaction. Moreover 

is we take ~3) seriously for large values of & we see that for 

n(1) ( ~ )>~ there will be a gap between the two stability regions 

(corresponding perhaps to a region where exponents depend continuously 

on the details of the interaction?). The point ~C~)(E) = ~ appears 

as it were a "tricritical point" in the ( ~ , n ) plane, where the na- 

ture of the stability boundary changes qualitatively:from (61), (62) 

we obtain that it lies at n=2, d=2.81, i.e. very near the point repre- 

senting real Helium. 

The two lines, n(E) and n(1)(~)should cross on the n=2 line. In 

fact the values ~ of ~ at which they cross the n=2 line mismatch 

by ~= 0.08 which, however small, is of the same order of ma- 

gnitude as the distance of the physical point from the boundaries. 

Thus even if the physical point appears to be safely on the scaling 

side of the boundaries, the uncertainties pertaining to the extrapo- 

lation up to finite ~ are sufficient to cloud quantitative con- 

clusions. 

If we try to estimate the fixed point values of the parameters 

f,IAT we face similar difficulties. Eqs. (36),(39) imply for the dy- 

namic scaling fixed point at n=2 

6 ÷ + (64)  

where I~ ~ is given as a solution of an implicit equation, of the 

form 
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where 

(AF) : 
A 

%d = ~°c.~ +6 M(~ ~, .) + O(e 2) , (65) 

~n) is the lowest order estimate of %~ ((He) : ~m]=(4-h)/~; 
~°(n].2~-~ ) , and the function H is simply related to L,G, 

[10, 15] . One may try to solve (65) by setting 

~-~ ~o(~)+ ~ I~4(~%) ~ O(~t), (66) 

obtaining therefore 

(67) 

but this procedure is not warranted, for any value of ~ , if we are 

near the boundaries n(~ ) or n (I) (6) : in this case ~°and ~ are 

of the same order of magnitude. Since the physical point lies very 

near the boundary, it is easy to make an error of some magnitude when 

we use an extrapolation procedure which does not take care of the 

boundary. But the boundary itself has been estimated just to first or- 

der in ~ ... Dohm [15] introduces a suitable extrapolation proce- 

dure, which amounts to solving (65) and the analogous equation for AF 

models with respect to n and then expanding with respect to E , obta~ 

ring , in lieu of (65), the equation 

4 
n: 4 (68) 

This yields for the fixed point value ~ at n=2, E =I the result 

(He) : = 0.06, (69) 

(AF) : ~ = 0.15 

which shows the large uncertainty in the result, but also that %~ 

is quite small however it is estimated. Ferrel, Dohm and Bhattacha- 

rjee [I 9] and Dohm [15] have discussed the importance of a small va- 

lue of ~in the interpretation of critical point experiments both on 

the thermal conductivity [13] and on light scattering [20] . The main 

point is that the spectrum of entropy fluctuations has a very differ- 

ent shape at T c depending on the size of ~ : if ~'~ is small it 

shows a substantial dip at small frequencies, which eventually rea- 

ches zero at ~= 0. As ~ increases, the dip begins to fill in, 

leaving the outer 'Wings" essentially unchanged. Hohenberg, Siggia and 

Halperin ~I] computed the shape function for a value of ~ for which 
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the central dip had almost filled in, leaving only a characteristic 

"shoulder" as a remainder. A similar phenomenon appears when we move 

away from T at fixed wevenumber k in either direction. First the cen- c N 
tral valley of the spectrum fills in, only after do the outer wings 

feel the distance from the critical point and start behaving as expect- 

ed from dynamic scaling. The net effect is a widening of the critical 

region for entropy fluctuations up to temperatures for which the cohe- 

rence length ~ satisfies 

where ~ , the ratio between order parameter and entropy fluctuat- 

ion characteristic frequencies, is a number which becomes small with 

. All the more important is a proposed test [15] which allows 

one to estimate the critical value ~'~ from the actual shape function 

of entropy fluctuations. 

Let us also observe that a small value of 9A7 ~ would imply a 

small value for the subcritical exponent 6Our which should vanish on 

the boundaries. The estimation of this exponent runs parallel to the 

estimation of ~ . A straightforward E-expansion yields 

CO~-= e / 4  - 0.108 6 ~" j (71) 

whereas a more careful extrapolation, which takes into account the 

boundaries, yields at n:2, ~:1 [15] 

He : ~ =  0.048, (72) 

AF : ~ = 0.098, (73) 

i.e. a rather small exponent, known with an uncertainty of a factor 

two. This means that there are rather slow corrections which mar the 

asymptotic behaviour and must be taken into account in the interpreta- 

tion of experimental data. 

Ferre~ [19] has discussed at length the implications of the diffe- 

rent fixed points as applied to an understanding of experimental pro- 

perties of pure Helium. What I tried to point out is the care needed 

in interpreting the results of a 6 -expansion: one should investiga- 

te the whole (~)n) plane and try to understand from all available in- 

formation the location of the physical point with respect to the rele- 

vant physical boundaries. If one sticks to a straighforward extrapola- 

tion; one may easily be led in error. Sometimes it will also be neces- 

sary to receive a hint from experiment to understand which of the 
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different possible asymptotic behaviours has actually been chosen by 

Nature. 

The renormalization group analysis of the dynamic critical beha- 

viour of He3-He 4 mixtures is essentially due to Nelson and Siggia 

[22, 23] . Although their work has found substantial experimental con 

firmation [24] there still are some open problems about the applicabi- 

lity of their analysis in d=3. What follows is a pedestrian account 

of their work. 

As soon as one introduces some He 3 in He 4 one must consider the 

presence of two conserved fields coupled to the order parameter: an 

entropy-like field q 

~ C(X), (79) 

where ~ 3 is the ~ point mass density, ~ (~) the entropy density, 

c~) the He concentration (both intended as deviation from equilibrium 

values) and ~ its conjugate chemical potential. As the concentration 

c o of He 3 reaches zero, q eventually becomes the entropy-like mode we 

have previously called m; for any c o >0 the q fluctuations are 

asymptotically decoupled from order parameter fluctuations as one ap- 

proaches the ~ line, whereas they diverge (for ~>0) in pure Helium. 

On the contrary the c fluctuations yield a divergent susceptibility. 

= ~ ( 8 0 )  

if the ~ line is approached at constant ~ corresponding to a nonze- 

ro concentration. While one should in principle study a model in which 

both fields, q and c, appear statically coupled to the order parame- 

ter, one may simplify the task if one is interested on either asympto 

tic behaviour, namely: 

- if one is interested on the neighbourhood of the tricritical 

point, the range where the q field susceptibily is finite is sufficien 

tly large to take a model in which its fluctuations are Gaussian [22]; 

- if one is interested on dilute solutions, the quasidivergence of 

q susceptibility dominates over most of the accessible temperature 

range, thus calling for the introduction of a model where q fluctua- 

tions are coupled to the order parameter, and c ones are Gaussian [23]. 

I shall dwell on the first model, as the one relevant for tricri- 

tical behaviour. It reads: 
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~.~ 6K . ~ ~'t':-~(,,+~>.) -~,,o~ -,~,.oI,~-+~. (81) 

@ 

~-~ c : °"  ~6- + L . V * ~  +Z&,oi  m [~* _ j , ] ,  ~ , 6 ~  (83) 

where the Landau-Ginburg functional ~ is given by 

' 1, 
and the correlations of the noise sources, ~ , ~ , ~ , satisfy obvious 

Einstein relations with the kinetic coefficients ~ , N' Lo ,~ • The 

reversible couplings 84,0 and ~o are related to experimentally 

accessible quantities. The term proportional to ~o in eq.(84) re- 

presents the static coupling between fluctuations of c and of 

The off-diagonal transport coefficient Lo , coupling the conser- 

ved fields q and c, makes the perturbation expansion more complicated. 

The essential features 

be written down almost 

renormalization-with a 

coupling ~o , as in eq 

~IK° 

of the renormalization scheme may nevertheless 

by inspection. We have besides the usual static 

nontrivial factor Zc forced upon by the static 

• (35)- the dynamic renormalizations: 

=' l , ,q 

Z ,  Z r  Z ~  , 

Zl, Z r Z x ,  

ZK / Z r  , 

Fo/Ao-~i Z ~ I Z r ,  

L~ I(~o~o) = ~ z.z~/z ~ 

6o -- ~Zb 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

Moreover a Ward identity implied by the reversible nature of the 

couplings ~,o ' ~2,o entails 

Z~ = i, (91) 
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La -- Lc . (92) 

One obtains therefore the following Wilson functions: 

(93) 

(94) 

-- C - ), (96) 

in addition to WKW a , W~ and to the static ones. Of these we shall 

need the one relative to 12", defined by an equation similar to (18) : 

where ~ (~) is the exponent function of the ~L insertions [ 4~. 

From (97) one may readily obtain the static crossover. One has to lo- 

west order in ~ the following fixed points: 

(a) the critical fixed point ~ =~, ~= ~ , at which 
6 

~" = - ~I~ 

(b) an instable critical fixed point ~= ~ e , ~= O ; 

(c) the tricritical fixed point ~ =O , ~= ~ , at which 

~ ~ -- ~% / ~t = -- & . Here the suffix "t" refers to the 

tricritical exponents. 

As ~ increases, the fixed points (a) and (b) approach each 

other: they cross on the line ~ = 0 and exchange stability. On the 

~-- line in three dimensions the relevant fixed point is therefore 

(b), but the slow vanishing of v introduces important corrections, 

as in[3]. 

The analysis of the flow given by eqs. (93)-(96) appears rather 

difficult but simplifies owing to the presence of fast transients. One 

may observe that fl and f2 settle down rapidly to a common value f, 

driving %~3 to the value: 

~J'~* = I (98) 

One then notices that as soon as fl = f2 one has 

(99) 
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and for nonzero v the extra term of q~ appearing in (96) is 

enough to drive %~ to the value: 

~&P~ = OO • (100) 

In this limit b settles down to zero and the remaining exponent 

functions, ~p and ~K , simplify drastically, yielding: 

¢ 
q r  = ~+~', ÷~, (lOl) 

_ 4 ~ (102) qK = 

~c -----~' (103) 

At any dynamic fixed point with f~ 0 one must have 

(104) 

which together with (98) (99) implies the following asymptotic beha- 

viour for the effective transport coefficients: 

6 
F,~c ~,~ F,~ L , ~  ~ • ( lO5)  

On the other hand, depending on the value of v e , we have diffe- 

rent fixed point values of the dynamic parameters: 

at the critical fixed point (a) the stable fixed point is at 

~T4~ ~ 0, implying 

~,. ~" ) (106) 

~ el~ therefore all transport coefficients diverge like , in contrast 

with pure Helium behaviour, where factors of ~/~9 appear; 

%~,~' = 0, at the tricritical fixed point (c) the stable value is 

yielding 

:-~ :-~e • 
(107) 

In this case the asymptotic behaviour of the kinetic coefficients 

is given by: 
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I ~  " A,e~ ~ L,~ (lO8) 
Another interesting fact appears on a closer investigation of the 

flow equations: as we approach the ~ line sufficiently close to the 

tricritical point, v first lies near its tricritical value, then cros- 

ses over to its critical value E /5. It may then happen that f is dri- 

ven to an intermediate fixed point value before ~has the time to 

become significantly different from zero. If we look indeed at the 

stability of the fixed point v* = ~/5 ,~-- 0, f~ = 4 6/5 we obtain 

the transient exponents: 

3 ~ _ 6 & , (109) 
= yf - 3 -  

tOl~, = - ~ ~ ~ 4 ,.if..* = - " ~ " ' e  (110)  

and the smallness of I~ ~is sufficient to warrant this possibility. 

We expect therefore the appearance of an intermediate region of pure- 

ly dynamic nature, characterized by the behaviour: 

~2e/s 

which lies between the "tricritical" and "critical" regions. 

Which results of this analysis will hold good for real He3-He 4 

mixtures? Let us first note that the behaviour of v changes quantita- 

tively in three dimensions, where the stable fixed point is at v W= 0. 

we expect that I&T;#(M) on the ~ line, what does not modify Then the 

asymptotic exponents but makes the analysis of correction terms much 

more complicated. Some sort of analysis like the one performed in [3 j 

should become necessary. We may also note that if (98) is modified at 

higher orders in E , the behaviour of the experimentally measured 

thermal conductivity may be qualitatively modified: since it is deter- 

mined by a delicate interplay of diverging and vanishing quantities 

in which the leading corrections eventually dominate [23 ] . 

But the major problems lie in the divergence of ~ at the tricri 

tical point. A similar situation appears in model C of Halperin, Hohen 

berg and Ma [1,4] as well as in some models of b icritical behaviour 

[25 ]. As one computes second-order corrections, one formally Obtains 

exponent functions which are singular (like in~ ) as %0-~ ~ . It ap- 

pears as if the limits ~0o, & ~ 0 could not be exchanged C5~. if 

one goes to ~5~Oa before taking ~ O  one obtains frequency-depen- 



208 

dent 7functions which prevent renormalization of the theory. On the 

other hand one may try to get out of the E-expansion altogether by 

introducing values of 9AT of 0 (exp C/~ ) [25,26] ; but in this case 

it is hard to believe that next order computations would not alter 

drastically the results. 

Whatever the meaning of this difficulties are, they will be more 

apparent in tricritical He3-He 4 mixtures than elsewhere, as emphasized 

Nelson and Siggia [23] . The characteristic exponent for the diver- by 

gence of %0-~ is in fact ~%/J% = ~ , much larger than the correspon- 

ding one in model C. Probably a hint will come from experimental inve- 

stigations or from real space analyses. 

We have seen that however powerful the E -expansion is, it cannot 

give all the answers, and that it is necessary to implement it with 

subtle extrapolation procedures if quantitative predictions are re- 

quired. All available information is useful to allow for an interpre- 

tation of RG calculations. In particular a real space analysis of mo- 

dels with propagating modes would be welcome: for even if its interpre 

tation problems are no smaller than those of the field-theoretic RG, 

they are not the same, and some hints may be obtained from the compa- 

rison. 
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INTRINSIC AND EXTRINSIC CENTRAL-PEAK PROPERTIES 

NEAR STRUCTURAL PHASE TRANSITIONS 

K.A. MUller 

IBM Zurich Research Laboratory, 8803 RHschlikon, Switzerland 

ABSTRACT 

This review assesses the occurrence of slow collective dynamics above T in struc- 
c 

tural phase transitions, distinct from normal-, under-, or over-damped soft modes. 

This is done mainly from an experimental point of view but proper reference to 

important theoretical progress is given. After a reminiscence of the first observa- 

tion of a central peak (c.p.) in SrTi0 3 and its possible origin, computer simula- 

tions and strongly anharmonic (soliton)-type theories related to this phenomenon will 

be discussed. Then, the results of theories in which slowly-relaxing defects are 

coupled to the order parameter are given. A comparison with existing experiments 

above T indicates that the width of c.p's have extrinsic origins, i.e., are 
c 

impurity dominated. In contrast, electron paramagnetic resonance (EPR) measurements 

of the distribution of the order parameter in SrTiO 3 prove the existence of short- 

range order clusters in this displacive system at T . This short-range order 
c 

accounts quantitatively for the non-vanishing soft mode, thus singling out an intrin- 

sic property of the c.p. phenomenon. The vanishing c.p's in hydrogen-bonded ferro- 

electrics are put into perspective regarding their critical dimensionality. Examples 

of magnetic centers which relax slowly in these ferroelectrics, are discussed. 

Present address: IBM T.J. Watson Research Center, Yorktown Heights, New York 10598. 
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I. Introduction 

Until 1971 structural and ferroelectric phase transitions showed, and were analyzed 

by, Landau-type mean-field behavior concerning the order parameter ~(T) and other 

static properties [i]. This included the "soft-phonon" mode ~ (T) [2,3] present in 
S 

these systems above T due to the finite mass of the atoms and their intertia, as 
c 

opposed to magnetic systems. Accordingly, previous to that year both quantities, 

~(T) and Us(T), appeared to vary proportionally to IT-Tc I~2. It was then found 

that the order parameter close to T would rather vary as IT-Tc I~3 in SrTi03 and 
C 

LaAI03, a dependence common to short-range critical behavior [4]. This was not un- 

expected because the soft phonon for these crystals for T > T c is at the R-corner 

of the Brillouin zone and ~(T) has rotational character. Thus, a cancellation of 

long-range electron dipolar forces occurs as in antiferromagnets [5] resulting in 

short-range behavior. 

The intensity I(T) of the (V2, V2, 3/2) Bragg peak which is allowed below T c 

105 K on symmetry grounds, and is classically expected to behave as I(T) = ~(T) 2, 

IT-Tc 12/3 dependence for T < (Tc- 4 K) but showed finite quasi- rather followed a 

elastic scattering above T [6]. An inelastic neutron-scattering experiment by 
C 

Riste et al. [6], then revealed in the van Hove function that the R-corner soft mode 

did not freeze-out. It remained finite, lost intensity on approaching T at the 
C 

expense of a central peak (c.p.) in the structure factor S(q,m), as shown in Fig. i. 

Its width was beyond resolution. A subsequent study by Shapiro et al. [7] on SrTiO 3 
+ 

and KMnF 3 confirmed the existence of this peak critically rising for T ÷ Tc but 

its width could not be resolved either although the experimental resolution was 

improved over an order of magnitude to 0.02 meV (Fig. 2). This c.p. feature distinct 

from the soft mode is the theme of the present review. The soft mode itself may be 

underdamped as in SrTi0 3 or overdamped as in KMnF 3 or LaAI0 3 [8]. 

Due originally to Hohenberg [9], the form factor 

÷ I S(q,~) = ~ f+~ <~q(t) ~q(O)>e i~t dt, 

with ~q(t) the Fourier transform of the R-corner rotational order parameter 

has been cast in the following phenomenological form 

÷ n(~)+l ~ I 1 S(q,w) ~ Im -- , 
-- ~ ~0 (~, T)-~2-iw[ F0+r (~, T) ] 

where n(~) is the phonon occupation number and 

(i) 

(r), 

(2) 
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Fig. I. Energy scans at the R-point for SrTi03 at three temperatures above the 
transition temperature T = 106 K. The dashed curves indicate the instru- 

c 
mental resolution as seen from the incoherent background. At 108 K the 
curve is only a guide to the eye. From Riste et al., Ref. [6] 

F(~,T) = 62(T)/(y -i~). 

For F0 << ~2/y and ~ >> y, one gets the soft mode with 

the so-called collisionless regime [i0], 

÷ kT 
Sph ( q , w )  --~ 

and a central peak for small 

+ kT 
Scp(q'~) 

2 2 
where y' = y ~sO/[~s0 + ~2(T)] 

critical quantity proportional to 

(3) 
2 2 62 

~s~ = ms0 + (T) in 

r 0 

[C0s~2 (~,T)_ 212+ 2 F02 ' 

in the collision dominated regime 

2 2 ' 
tOSO o 60sO 

2+ 
is the central-peak width and ~so(q,T ) 

-I + 
X (q,T) , 

(4) 

(5) 

is the 

X being the static susceptibility of 
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the system. 
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Fig. 2. High-resolution energy scans above T for SrTi03 and KMnF. The dashed 
line corresponds to the soft mode, an~ the solid llne to the central 
component. From Shapiro et al., Ref. [?]. a) SrTi03, T - T 15.2 K, b) 
KMnF3, T - T = 17.9 K c 

C 

The discovery of the c.p. in SrTi03 up to about 50 K above Tc, and the observation 

of EPR linewidth broadening over that temperature span [ill (see Fig. 3) started a 

large-scale research into the possible existence of a new fundamental excitation of 

solids. Theoretically and experimentally, attention was focussed on getting the two 

unknown quantities in Eq. (2): a) 62(T,~), responsible for the intensity of the 

c.p. as well as for the finite soft mode frequency ~s (T=Tc) = ~(T=Tc), and b) ¥(~), 

responsible for the width of the c.p. Theoretically, in view of the form F = 

62/(y - i ~ ) ,  o n e  l o o k e d  f o r  some coupling of the soft phonon to slowly-relaxing in- 

trinsic degrees of freedom which, because of the symmetry of the SrTi03 system, had 

to be nonlinear. These efforts included coupling to acoustic modes, phonon-density 

fluctuations, thermal-diffusion modes, etc. None of them appeared satisfactory at 

the time and provoked criticism. For more detailed summaries, we refer the reader to 

the fine reviews of Cowley [10] and of Feder [12]. Both authors pointed out the 
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temperature, from Yon Waldkirch et al., Ref. Ill] 

severe difficulties encountered and Feder concluded: "As the phenomenon completely 

dominates the fluctuation spectrum near Tc, we are left with the nagging feeling 

that there is something essential we have not understood unless the central mode is 

satisfactorily explained". He expressed finally the view that the central mode is 

intimately related with the critical fluctuations near the structural phase transi- 

tions, barring the possibility of being due purely to impurity effects, as proposed 

by Axe [13]. This appears to be the case for the c.p. observed in Nb3Sn [14]. 

In this paper we want to single out from the wealth of work done since these reviews 

were written, those dynamic properties which are intrinsic in nature and those ex- 

trinsic above T . We start by discussing results of computer simulations and non- 
e 

linear theories in Sec. II. In this section the extrinsic theories of slowly-relaxing 

defects will also be presented as possible sources of the very narrow c.p's observed. 

We then review in Sec. III all published experiments on the c.p. linewidth y' and 

show, by comparison with the computer and theoretical results of Sec. II, that they 
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are impurity dominated. In Sec. IV, the question of which of the intrinsic properties 

are observable, is addressed. It turns out that it is the second quantity in Eq.(2), 

~2(T = T c) = ~s~(T = Tc) # 0, which is quantitatively related to the short-range 

order existing at T as detected by electron-paramagnetic resonance. The quanti- 
c 

tative agreement is proof of a displacive to order-disorder crossover, on approaching 

Tc, in accordance with the expectations expressed above. The final section is 

devoted to central peaks observed in hydrogen-bonded KH2PO4-type ferroelectrics. In 

the rather lengthy Sec. V - which may be skipped by readers interested only in intrin- 

sic properties - light-scattering and magnetic-resonance experiments on central peaks 

are summarized and shown to result almost totally from impurities either static or 

dynamic. A speculation involving the critical dimensionality d is offered at the 
c 

end of this section to explain why pure uniaxial ferroelectrics only show classical 

mean-field static and dynamic properties without a central peak. Within the present 

text, a number of papers could not be directly referred to. In order to facilitate 

access to them they appear at the end of the reference list with full titles. 

II. Computer Simulation, Anharmonic and Impurity Theory 

a) Molecular-Dynamics Calculations and Strongly Anharmonic Theory 

The difficulties with conventional anharmonic lattice perturbation theory led to the 

suspicion that the c.p. phenomenon might - close to T - result from strongly an- 
c 

harmonic effects, not tractable by perturbation expansions of the harmonic lattice. 

In order to see what additional excitations, if any, may be present, large-scale 

computer simulations were undertaken. The first paper of a series, pointing towards 

the heart of the problem, was that by Schneider and Stoll [15]. They simulated a 

two-dimensional d = 2 lattice with a model Hamiltonian of the form 

,2 

~= ~ ~ 2 + g x% + ~ x% + g< ~'> (x£ - xg, , (6) 

labels the particle with mass M in the %-th unit cell. Mx and where % x% 

are the momentum and displacement with respect to the square rigid lattice with 

constant a. A,B and C are model parameters chosen such as to represent anti- 

ferrodistortive motions of the particles with short-range interactions only, as 

symbolized by < %~'> . The second and third terms in Eq. (6) represent the harmonic 

and anharmonie single-particle potential, and the fourth their interaction. 
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At T = 0 the order parameter is given by x = (-A/B) ~2, thus for A < 0 a finite 

T is guaranteed. The larger the IAI value the more order-disorder character the 
C 

system will have, with a deep double-well single-particle potential. A convenient 

measure of the order-disorder versus displacive character is the ratio g of the 

depth of the single-particle well E = A2/4B to kTc, i.e., g = A2/4B kT . For 
W C 

121 ÷ 0 g + 0 one approaches the classical displacive limit which has T = 0. 
C 

Schneider and Stoll employed the molecular-dynamics technique, which solves the set 

of coupled Newton's equations associated with a model Hamiltonian, Eq.(6), according 

to a set of difference equations with a time increment. Using a lattice of 40 × 40 

points, with periodic boundary conditions, they computed the displacement-displacement 

correlation function <Xq(t)X_q(0)>, and from it the corresponding dynamic structure 

factor S(q,~). They simulated an order-disorder and a displacive system; the result 

for the latter with g = 0.2 is shown in Fig. 4 as a function of frequency at 

(T - T )/T = 0.06 for various wave vectors close to the reciprocal lattice point 
C c 

{3,1} which becomes a Bragg spot below T . One sees in addition to the soft mode, 
C 

a c.p. of comparable width. The soft mode stopped at a finite ~ 2 and faded in 
s ~ 

intensity on approaching T . Simulations of the order-disorder system with g > 1 
c 

yielded only the well-known diffusive ~ = 0 centered excitation and no soft mode 

as expected. 

In order to understand the physical meaning of their result, they displayed the 

dynamical-rotational motion of the particles graphically, as shown in Fig. 5. Therein, 

the dark signs represent local rotations having opposite sign to that expected at 

zero temperature. This figure reveals near T the existence of short-range clusters 
c 

separated by walls where the local displacements change sign. The existence and 

dynamics of these clusters gives rise to the c.p. and inhibits the soft mode from 

freezing out because the symmetry is broken locally. 

Similar results as those reviewed here were published later by Aubry [16] and others 

[i?] for a linear array. In such a linear chain, no phase transition occurs at 

finite temperature but, classically, T = 0 can be viewed as a critical temperature. 

Consequently, the system exhibits all features of interest for T > T . Krumhansl 
-- C 

and Schrieffer [18] then showed analytically, for such an array, the existence of an 

important class of non-linear solutions which indeed could not be represented by 

usual phonon perturbation expansions: the motion of "domain walls" or solitons. The 

particular species occurring in their linear chain model was the kink and anti-kink 

solitons. Recently physicists became aware of quite a number of other species such as 

breathers, etc. The reader is referred to a recent conference [19] held on the 

subject which shows the emphasis these highly-nonlinear mathematical solutions have 

attained. 
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Fig. 4. The frequency- and wave-vector dependence of the spectral response of a 

d = 2 displacive model with g = 0.19 at t ~ 0.06, as determined by 

molecular dynamics from Schneider and Stoll, R~f. [ig] 

On the molecular-dynamics side Schneider and Stoll have considerably substantiated 

the picture by simulations for d = 3 and d = 4 dimensions [20]. They also con- 

sidered a d = 2 lattice with anisotropy and a d = 3 lattice with two masses. 

Thus, the latter model also yields a phonon branch. They also computed the energy- 

energy correlations for T < T . To discuss all these results here would lead us 
-- e 

too far, we therefore refer to a review of theirs [19]. The essential point is that 

for T > T the picture we described for d = 2 is unaltered. 
C 
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Fig. 5. Snapshots of instantaneous cluster configurations at T = 0. a) k~T = 0oi; 
b) 0.22; c) 0.24; d) 0.26; e) 0.3; f) 0.8. kT = 0.245, from Schneider 
and Stoll, Ref. [15] c 

b) Coupling to Impurities 

Due to the narrowness of the c.p's observed, scattering from static strain fields was 

discussed quite early by Axe et al. [13]. Such a simple mechanism would yield an 

intensity I ~ $2 . ~ i/~^ 4 and ~ 2= ~ 2o But the latter formula was not obeyed 
s~a~iiS u 2. U ~ 2 2 

experimentally and ~ I/(~02 ~ ) with ~0 # ~ was generally found. Further- 

the temperature dependence of the EPR linewidth AH(T) ~ (T - Tc)-0"65 more, [i±,21] 

could also not be accounted for by inhomogeneous broadening due to imperfections by 

Folk and Schwabl [22], who arrived at AH(T) = (T - T )-v(~2 - n) ~ (T - T .0.32 c e ) for 

d = 3. 

The possibility that defects or impurities are relevant for c.p's near structural 

phase transitions (SPT) received a new and strong impetus from a paper by Halperin 

and Varma (HV) [23]. HV used mean-field theory for a displacive system containing 



random static or slowly-relaxing defect cells coupled linearly to the order parameter. 

The defects breaking the symmetry make transitions between two wells at + x with 
d 

a transition rate v = vO exp AE/~T, where AE is an activation energy of the order 

of 0.1 to 0.2 eV, v 2 10-12sec, their concentration is c (see Fig. 6). With these 
0 

assumptions, they found a c.p. and calculated the two quantities characterizing its 

dynamic structure factor CEq.(2)1 

DEFECT 

Fig. 6. 

/ 2 
SINGLE CELL w,, (TI LOCAL RELAXATION: 

- v = v,e 

CONCENTRATION : C 

A relaxational defect cell in an anharmonic lattice array 

2 
2 
8 (T) = c ( (TLTvq~ ld2 ) 

Y = V = vO exp AE/kT. 

Here, m is the mass of the intrinsic atom, w (T) the uncoupZed intrinsic single- 
an 

particle anharmonic frequency, and 

the Fourier transform of the bilinear interaction of particles in cells R and R ' .  

The symbols w (T) and v used in Eq.(7) and characterizing the intrinsic 
an qo 

lattice properties are those introduced by Thomas C241 previously in self-consistent 

mean-field (MF) theory. They are more often employed by experimentalists than those 

HV used. An important condition for a defect to be operative in producing a c.p. is 

that dTc/dc > 0. From Eq. (7), one expects 8L(~) a 1/T. Close to Tc where the 

correlation length 6 becomes larger than the distance between particles, one does 

not expect Eq. (7) to hold due to cluster interactions. 
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Halperin and Varma compared their formula quantitatively to the known neutron and EPR 

data in SrTiO 3. They obtained agreement for a concentration of c ~ 10 -5 and a 

ratio of defect to intrinsic rotation of the octahedra of Xd/X i ~ 5, i.e°, very 

reasonable results, although the I/T dependence was missing. Their findings prompted 

two further theoretical mean-field investigations. 

The impurities considered by HV break the translational synnnetry of the crystal and 

may give rise to local modes which can be investigated by resonance experiments. Due 

to the coupling to the soft mode, these local modes can become strongly temperature 

dependent. H~ck and Thomas [25] calculated their behavior self-consistently with 

mean-field theory as well. They obtained a criterion for local-mode condensation at a 

temperature T l°c above T . If this is fulfilled, the local mode for displacive 
c c 

oscillatory defects is given by ~i 2 = KI(T _ TlOC) and for a relaxing Ising-type 
Joe c ' 

impurity by 1 / r l o  c = r ( T  - T l ° C ) .  
c 

TlOC In a range Tc --< T --< c , local order exists around the impurity site and the local 

-T l°c T) V 2 order parameter at this site grows as x d ( c - and decays exponentially 

as (l/r) e -~/r, with increasing distance from the impurity. Here, ~ is the intrin- 

sic correlation length of the host. Going beyond mean-field approximation no real 

freeze-out is expected but a qualitative change in local defect dynamics should be 

observed. 

Quadratic coupling to the order parameter is another possibility [26]. Here, the 

impurity is at a symmetry conserving site in contrast to that which coupled linearly. 

If the impurity is softer than the rest of the lattice, a localized bond state c b 

below the soft-mode band exists, i.e., c b - ~ = a > 0 where e is the bottom of the 

soft-mode band and a = ~(T - T O ) with T O the intrinsic transition temperature. 

The local "transition temperature" is then given by T l°c = T O + ~/~. Below T l°c 
c c 

the high-temperature symmetry will be broken and the cluster couples linearly to the 

soft mode, giving a c.p. above the T O of the bulk. 

A further step in understanding was achieved by a subsequent computer simulation by 

Schneider and Stoll [2?]. They introduced in their d = 2 system, random slowly- 

relaxing defects coupled to the displacive system. The result was a c.p° considerably 

narrower than that found in their intrinsic simulations, plus the essentially unchanged 

broad soft phonon at finite frequency m (T). The critical dynamics of the narrowed 

(T - Te)-Y remained unchanged. This simulation which avoids the shortcomings c.p. 

of the mean-field approximation, and includes impurity interactions near Tc, indi- 

cated where further progress could be expected experimentally in real d = 3 systems. 
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III. Experimental Central-Peak Widths in Displacive Structural Phase Transitions (SPT) 

This section reviews the experimental width y' ~ r'(q,T) [see Eq.(2)] in displacive 

systems as has been done in an unpublished report by the author [28]. The summary on 

c.p. in hydrogen-bonded ferroelectrics which was also contained therein, is deferred 

to Sec. V, amplified by most recent results and by a critical review of magnetic 

resonance work. 

a) SrTi03 

Since by far the largest effort has been devoted to this crystal, we dedicate the 

first subsection to it. As described in Sec. I, it has not been possible to resolve 

the energy width of the c.p. in the early inelastic neutron-scattering efforts [8,?]. 

The resolution has since been enormously improved from 0.02 meV to 0.08 peV which 

corresponds to 20 MHz. This has been achieved by T~pler et al. with a refined back- 

scattering technique [29]. Even with this excellent resolution, no broadening 

mOs2(T) [Eq.(5)] could be observed up to Tc + 12 K, as seen in Fig. 7. The upper 

limit so found is in agreement with y-ray scattering [30]. The most recent light- 
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Fig. 7. Energy width of the SrTi03 c.p. back-scattering spectra as a function of 
temperature. The broken llne indicates the width of the resolution func- 
tion. After T~pler et al., Ref. [29] 
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scattering experiments of Lyons and Fleury [31] indicate two characteristic times of 

-i 
t h e  r e l a x i n g  s e l f - e n e r g y  T 1 and T2: a s h o r t e r  T 1 w i t h  T 1 ~ 15 GHz i s  o b s e r -  

v a b l e  direct in the depolarized scattering for T < T . This feature is also found 
c 

f rom an a n a l y s i s  of  t he  B r i l l o u i n  s p e c t r u m  w he re ,  f o r  T < Tc, t he  TA phonons  c o u p l e  

linearly to the soft phonons. From the same analysis, a slower process T 2 with 

-1  
~2 < 0 .3  GHz, no t  r e s o l v a b l e  w i t h  the  i o d i n e - f i l t e r  t e c h n i q u e  i n  d e p o l a r i z e d  l i g h t  

scattering, was inferred for T ÷ T - Its existence is what Courtens predicted from 
c 

an a n a l y s i s  of  n e u t r o n  s c a t t e r i n g ,  s p e c i f i c  h e a t  and b i r e f r i n g e n e e  d a t a  f o r  T > T 
C 

[32].  

-I 
The upper limit of T 2 from the light scattering is in agreement with the other 

work d i s c u s s e d ,  and the  r e s u l t  of  t h e  EPR l i n e w i d t h  and shape  m e a s u r e m e n t s .  The 

latter yielded a local relaxation rate of F~ = 60 MHz at T = Tc + 2 K, from which, 

u n d e r  c e r t a i n  a s s u m p t i o n s ,  one c a l c u l a t e s  a c o l l e c t i v e  c e n t r a l - p e a k  w i d t h  a t  T o f  
c 

F' ~ 910 r~ [33]. A most recent extended analysis of the EPR-linewidth data has 

f u r t h e r  na r rowed  down F~ to  l e s s  t h a n  6 Nttz be t wee n  Tc and Tc + 11 K [34]  f o r  

radial local fluctuations of the oxygen. Thus F' < 0.6 MHz which represents the 

narrowest r e s o l u t i o n  a t t a i n e d  so f a r .  A summary of  t he  p r e s e n t  f i n d i n g s  i s  g i v e n  i n  

Table i. 

Thus, it appears that above T the central-peak dynamics is very slow and most 
c 

probably results from a linear coupling of the soft mode to slowly-relaxing defects 

as follows from Halperin and Va~ma's [23] analysis as well as from the later one by 

Schneider and Stoll [2?]. 

The above-mentioned more or less experimental agreement of F for the central-peak 
c 

width in SrTi03 is not a necessity, as the various techniques used probe different 

properties of the crystals. The detailed analysis of the depth-dependence of criti- 

cal y- and X-ray scattering in SrTi03 by Darlington et al. [30] has shown that 

the penetration depth at 14.4 keV is of the order of i to i0 ~m. Aso finds from bi- 

refringence data [35] that surface strain extends up to I mm into the bulk crystal. 

This means that the thickness one explores with y-rays is about two orders of 

magnitude thinner than the region of surface strain, i.e., highly perturbed. There 

will be a sufficient number of static defects of the proper symmetry to couple 

linearly with the soft mode - as considered by Halperin and Va~ma - to produce a 

narrow static central peak. 

In neutron scattering, the quasi-elastic peak one observes is the sum of all effects 

in the bulk, i.e., coupling to point defects, dislocations or volume strains. That, 

away from T , the central peak must come from these crystal imperfections is also 
c 

borne out by a recent inelastic neutron study by C~rat et al. [36]. From Fig. 8 , 
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Table 1 Central-peak width and other relevant data for SrTi03, unresolved width: 
given, resolved: underlined 

Technique Minimum width & Date Authors Reference 
Resolved width 

Inel. neutrons < 0.3 meV 1971 Riste et al. [6] 

6(T=T c) = 0.13 THz < 0.02 meV 1972 Shapiro et al. [?] 

y-rays < 0.01 ~eV = 2.5 MHz 1975 Darlington et al. [30] 
(i ~ surface only) 

Light scattering 

Raman 
T < Tc, 15 GHz,< 0.3 GHz 1977 Lyons & Fleury [31] 

Brillouin 1979 Su [3i] 

Inel. neutrons 

~(T=T c) = 0.13 THz < 0.02 meV 1978 Currat et al. [36] 

Inel. neutrons 

back-scattering 
(T + 12 K) < 0.08 ~eV = 20 MHz 1977 Z~pler et al. [29] 

c 

EPR VL < 6 MHz 
~ < 1/10v L _  = 0.6 MHz 1979 Reiter et al. [34] 

(T + Ii K) 
c 

one can see that away from Tc, the parameter ~2(T), which characterizes the central- 

peak strength, differs for the crystal used in Grenoble and the one of Shapiro et al. 

[?] in Brookhaven. This points to the fact that the central peak in the bulk is 

extrinsic in neutron scattering away from Tc. However, on approaching Tc, the 

magnitude of these quantities merged for the crystals used. Actually, the intensity 

at T is the same as the one obtained by Lyons and Fleury Esl] from light scattering 
c 

approaching T c from below. Most recently, Hastings et al. E37] observed a systematic 

enhancement of the central-peak intensity upon reduction of SrTiO 3 with hydrogen. 

The results provide direct experimental evidence for the involvement of a defect 

mechanism for the central-peak formation in SrTi03. Increasing the amount of Ti 3+ 

upon reduction from 6 × 1017 to 2020 -3 cm they found an enhancement of a few times 

the least reduced sample. One possible defect involved is Ti 3+ Sr 2+ on a site 

which EPR studies had shown earlier to couple linearly to the order parameter of the 

transition [38]. It resulted from the EPR study that the center relaxes with times 

-9 
shorter than TTi = ~A~ = 3 × i0 sec, and thus is an H-V center for times shorter 
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than 3 x 10 -9 sec. The EPR studies on non-conducting SrTiO 3 using the Fe 3+- V 0 

center as a probe mentioned earlier [ii,33], yields local relaxation times longer 
-9 -8 

than 3 × i0 sec, namely, T% > 1.3 i0 sec. Thus, in non-reduced crystals, the 

Ti 3+ is not the defect center which induces the central peak. 

In nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), the 

lines observed arise from magnetic moments which come from regions of the crystal 

which are only slightly disturbed. Too strong disturbances cause the lines to shift 

so much that they do not contribute to the line intensity. Resonance lines are, of 

course, observed if the crystal is strained homogeneously, as for instance, in mono- 

domain SrTi03 samples. In other words, the magnetic-resonance experiment acts as a 

discriminator against regions in the crystal which are much too perturbed. 

The three kinds of experiments discussed above, namely: a) X- and y-ray scattering; 

b) inelastic neutron-, Raman-, Brillouin- and Rayleigh scattering, and c) NMR and 

EPR are different probes; furthermore, ultrasound absorption may be yet another 

category. Experiments a) and c) are disjoint in probing the crystal, whereas experi- 

ments of type b) integrate over the whole crystal in the case of neutron scattering, 

and over selected parts in light scattering. If the crystal is relatively defect- 

rich, the quasi-elastic scattering will then, in the bulk, result mainly from coupling 

to those defects and not from the almost undisturbed microscopic regions of the crystal. 

b) Observations in Antiferrodistortive Crystals 

We shall first discuss two other crystals with zone-boundary soft modes: KMnF 3 and 

NaNb03 in which techniques of groups a), b) and c), reviewed above, definitely yield 

different relaxation rates. Cubic KMnF 3 also undergoes the same kind of structural 

phase transition as SrTi03 near second-order at 185 K. From critical ultrasound 

absorption, Hatta et al. [39] arrived at a critical F' width of 20 MHz at T = T 
c 

+ 1 K and 170 MHz at T = T + 4 K. On the other hand, using M~ssbauer y-ray 
c 

scattering Hanisch and Drosg [40] found an upper limit of the central peak width of 

10 -8 eV or 2.5 MHz up to T + 3 K. Despite the difference of the results in this 
e 

material, even the faster collective relaxation rate F' reported is very slow near 

Tc + 1 K. In contrast to SrTi03, which shows a well-resolved underdamped phonon, the 

latter is overdamped in KMnF 3 and the central peak sits on top of it [41]. The soft- 

phonon dispersion is more anisotropic than in SrTi03. This is even more so in the 

case of cubic NaNb03, where the behavior is near two-dimensional (2-d) above Tc + 

i0 K with T = 640°C as observed in X-ray and inelastic neutron scattering by 
c 

Denoyer et al. [42]. The soft mode condenses at the M point of the Brillouin zone. 
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In the high-temperature region above T + I0 K the soft phonon is overdamped and 
C 

narrows considerably on cooling below T + i0 K. This has been taken earlier as 
c 

evidence for a setting-in of three-dimensional correlations on approaching T . How- 
C 

ever, more recently the existence of an unresolved central peak extending 350 K above 

T was found and its domination over the overdamped mode for T > T accounts for 
C -- C 

the narrowing of the excitation observed near ~ % 0 [42]. 

As for KMnF3, y-ray experiments yield an unmeasurable narrow width in NaNb03 [30]. 

Earlier, Rigamonti's [43] group accounted for their NMR 23Na relaxation measurements 

in NaNb03, shown in Fig. 9, by using a constant and large cubic-phonon anisotropy of 

A = V50 down to T + 4 K and a local relaxation rate of P = 300 MHz at that 
c 

temperature. Rigamonti's experiments yield a dynamic width which is larger than the 

upper limit of the y-ray experiments outside the experimental error. As discussed 

earlier, this means that the two experiments probe different parts of the crystal: 

the NMR studies the least-perturbed of the bulk whereas the y-ray probes the highly 

perturbed surface. Owing to the very flat soft-phonon branch between the cubic R 

and M points in NaNb03, this results in near two-dimensional correlated sheets 

above ~ T + i0 K [42]. This anisotropy is in approximate agreement with the NMR 
e 

analysis. Therefore, this material should be the closest to the two-dimensional 

computer simulations of Schneider and Stoll [15] which shows an intrinsic broad 

central peak of width comparable to the soft phonon. Rigamo~ti's local relaxation 
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Fig. 9. Temperature behavior of the Na 23 NMR relaxation rate in NaNb03. After 
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rate of 300 MHz at T + 4 K is much narrower than the overdamped soft phonon of 
C 

F ~ 50 GHz [42]. Thus, again, such a narrow width can only result from coupling to 
e 

slowly-relaxing defects. As the local relaxation rate of 300 MHz at T + 4 K is 
c 

larger than in SrTi03, the defects are dynamic. Thus, they have to follow the 

dynamics as simulated in a recent 2-d model calculation with relaxing impurities by 

Schneider and Stoll [2?]. 

At 193 K, RbCaF 3 undergoes the same kind of phase transition as SrTi03 as well. 

Recently, in this fluoride crystal using inelastic neutron scattering Almairac et al. 

[44] observed a central peak whose width could not be resolved. However, they found 

that the parameter ~2(T) decreases when (T - T c) increases as required by the 

Halperin-Varma mean-field theory [23]. Such a behavior was also found in SrTi03 by 

Currat et al. [36] and very recently in NaNbO 3 [42], however near Tc, 62(T) de- 

creases faster than I/T as the mean-field theory predicts. Further away 62(T) is 

mean-field like in NaNb03 [42]. In LaAI03 where an unresolved c.p. was observed, 

~2(T) is independent of temperature [8]. It has been argued [44] that the increase 

in ~2(T) observed by Shapiro et al. could also result from ignoring the term 

~3 qa q6 in the dynamical matrix. On the other hand, this term was also neglected 

in the paper by Currat et al. [36], and ~2(T) nevertheless decreases for that 

SrTi03 sample. 

c) Ferroelectric Displacive Crystals 

In lead germanate Pb5Ge3011, a quasistatic central peak has been observed by neutron 

scattering above and below T by Cowley et al. [45]. From accurate Brillouin data, 
C 

the main part is narrower than 80 MHz [48]. Its intensity diverges as (T - Tc )-I 

for T ÷ T Its origin may be mainly static as bright spots are visually observed 
c 

[4?]. For T < T c, the intensity can be accounted for by local density variations, 

but for T > T the only possibility allowed by symmetry is at present the frozen 
c 

defect cell mechanism of Halperin and Varma [23]. Furthermore, Fleury and Lyons [46], 

using the iodine-filter technique in Brillouin scattering found, in addition, a 

dynamic feature of smaller intensity whose width is 0.13 cm -I. This feature cannot be 

accounted for by classical coupling theory. Therefore, these authors suggest that 

this intensity could result from quasi-mobile defects. 

Cubic KTa03 doped with several percent of Li, Na and Nb was investigated by Yacoby 

[48]. From the first-order Raman spectra he concludes that the Li + and Na + ions 

+ Ta 5+ on K sites or Nb 5+ on sites lack inversion symmetry on the time scale of 

the Raman experiment. From these and birefringence data he concludes that the centers 
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-I0 
are dynamic and relax with a time constant slower than I0 sec. A dynamic central 

peak should therefore exist in this doped material. However, as the doping was quite 

high (several percent), it is not clear whether the slowly-relaxing effects observed 

are due to the single Li + or Na + ion "rattling" slowly in the too large K + cell, 

or whether it is due to the cooperative interaction among these impurities. Most 

recently, he measured in a KTa03 sample containing about 6% KNb03, the first-order 

above and below T = 52 K [49]. IN(T ) increases T02 Raman intensity IN(T) + c _ 

critically on approaching Tc from above as IN(T ) 1 T = (T - Tc ) (see Fig. I0). 

This critical increase is shown to result from odd symmetry distortions with correla- 

tion length exceeding several unit cells and induced by the Nb ions on Ta sites. 

The analytic form of the divergence in IN(T ) is compatible with the Halperin-Yarma 

model. Assuming a continuous phase transition to be present does not account for the 

data. It thus appears to be the first scattering investigation confirming the H-V 

model for a particular known impurity. 
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H~chli et al. investigated the Li:KTaO 3 system by dielectric constant measurements as 

a f u n c t i o n  o f  f r e q u e n c y  [ 5 0 ] .  They found  t h a t  t h e  L i  + m o t i o n  becomes  s l o w e r  t h a n  
- 1  

i0 Hz near 4 K, thus one might say that it freezes out. However, the soft-mode 

energy i s  e n h a n c e d  on d o p i n g  w i t h  L i  +.  T h u s ,  wou ld  KTa03 be  a f e r r o l e c t r i c  w i t h  
+ 

finite T then dT /de < 0, and Li is not a H-V center. Thus the Li (in 
e c 

contrast to the Na and Nb) d o p i n g  w i t h  dTe/dC > 0 o f  KTa03, i s  i n  t h i s  s e n s e  

already outside the scope of our present review. We mentioned it to complete the 

p i c t u r e ,  a s  we a l s o  do f o r  t h e  f e r r o e l e c t r i c  SbSI i n  w h i c h  Stei2meier e t  a l .  [ 51 ]  

observed a broad c.p. of 1 THz width below T with Raman scattering. 
e 

We can summarize by saying that the narrow width of critical central peaks observed at 

commensurate structural and ferroelectric transitions for T > T , are all defect- 
c 

induced, be they static or dynamic. However, their nature has not yet been determined. 

The work reviewed in subsections b) and c) is condensed in Table 2. 

Table 2 Central-peak width and other relevant data for displacive SPT including 

ferroelectric ones 

~rysta$ Min. width & 
Date Authors Reference 

Technique Resolved width 

KMnF 3 (overdamped soft phonon) 

Inel. neutrons < 0.02 meV 1972 Shapiro et al. [7] 

Ultrasound (T + 1 K): 20 MHz 
c 

(T + 4 K): 170 MHz 1974 Hatta et al. [39] 
c 

y-rays (Tc+ 3 K): < 2.5 MHz 1976 Hanisch& Drosg [40] 
(i ~ surface) 

LaAIO 3 (overdamped phonon) 

Incl. neutrons < 0.02 MHz 1973 Kiems et al. [8] 

NaNbO 3 (overdamped phonon) 

Inel. neutrons < 0.8 meV 1977 Denoyer et al. [42] 

NMR (Tc+ 4 K) 300 MHz 1974 Avogadro [43] 

Pb5Ge3011 

Incl. neutrons < 0.02 meV 1976 Cowley et al. [45] 

Brillouin scattering < 80 MHz 1976 Fleury & Lyons [46] 

SbSI 

Raman scattering (T < T c) 1 THz 1971 Steigmeier et al. [51] 
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IV. Order-Disorder Behavior at Displacive SPT 

a) The Displacive ÷ Order-Disorder Crossover Concept 

The wealth of experimental evidence for an extrinsic origin of the observed width of 

the critical c.p's for T ~ Tc, as presented in the preceding section, led to consid- 

erable concern as to whether the phenomenon may not be entirely extrinsic in nature. 

However, the finite frequency of the soft mode Ws (T = Tc) in SrTi03, independent 

of the sample at T [86] pointed to a possible intrinsic observable quantity, i.e., 
c 

62(T = Tc). The findings of computer simulations underlined this possibility, as 

~s (T = Tc) in these studies was independent of the presence, or absence, of slowly- 

relaxing defects, the latter only influencing the width of the c.p. [28]. 

We remind the reader that we are only interested in experimental critical c.p's 

resulting from novel excitations of the solid as distinct from known ones. Coupling 

of the soft mode to the latter also gives rise to c.p's, e.g., heat diffusion modes or 

multiphonon states [82], etc. These are in themselves of interest but do not represent 

phenomena which fall outside the accepted picture of the slightly anharmonic lattice 

undergoing an SPT. As the above-mentioned c.p's mainly occur below Tc, it is experi- 

mentally better to confine oneself to T > T as has mainly been done throughout this 
-- c 

overview. 

Within the possible context of a novel excitation of the solid near SPT's, the situa- 

tion has been reviewed very recently by Bruce [52]. Going beyond the known theo- 

retical and experimental results he showed the direction in which further experimental 

progress had to be expected. We summarize in the following the view he expressed. 

Starting with a comparison of the two extreme idealized cases of SPT's, the deep-well 

order-disorder system on the one hand, and the displacive system on the other, he 

pointed out the shortcomings of both approaches. In the former, only the dynamical 

hopping across the deep local double well is taken into account, leading to the 

existence of cluster walls and their diffusion (as in magnetic systems), but neglecting 

the phonons in the quasi-statically disordered lattice. In the other extreme is the 

classical soft-phonon picture. There, using the independent-site approximation, i.e., 

replacing x x , by x <x ,> , the short-range correlations between particles are 

neglected. In this process, the particles move in an effective single-minimum poten- 

tial well, each one following an independent Gaussian random fluctuation. The response 

of the system has a single pole at the soft-phonon frequency. In another approach 
2 2 

called the independent mode approximation, x~ in Eq. (6), is replaced by 3 x~<x~>. 

This approach includes correlations. It yields an optimum harmonic representation 
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and a soft mode as well. However, the system undergoes characteristically a first- 

order transition to the ordered phase. This is a consequence of taking only harmonic 

modes into account whereas the behavior is inherently anharmonic near T . 
e 

From the two extreme cases of order-disorder and near-harmonic displacive models in 

which only domain wall motion or soft modes result, respectively, Bruce summarized the 

contemporary theoretical view as follows: " ...... With the onset of criticality, the 

growth in short-range order promotes a crossover from a regime in which collective 

behavior has the classical displacive form, to a regime in which the collective be- 

havior displays features better described in the language traditionally reserved for 

order-disorder systems". This picture is evidently in agreement with the computer 

simulations in d = 1 to 4 dimensions [18-18,21] as well as with the analytical 

analysis in d = 1 dimensions [19,20] which we summarized in Sec. II a). It, further- 

more, constitutes an appealing graphic expression of universality, in that it offers 

a vivid description of the underlying character of the spectrum of excitations and of 

why deviations from classical static exponents have been observed in SPT. In other 

words, it correlates the occurrence of non-classical static behavior with the forma- 

tion of order-disorder precursor clusters. Bruce amplified his statements by consid- 

ering the local potential V of cluster coordinates after application of renormal- 

ization-group (RG) transformations: V b = [RbV. In d = 3, g = Vs /kTc = 0.55 is of 

the order of unity. Referring to our discussion in Sec. II a), this suggests that a 

near-displacive system with g ~ I/i0 before renormalization becomes more order- 

disorder-like after, or equivalently, when the correlation length increases on ap- 
* 

proaching T . For d = 2 and 1 , this behavior is more pronounced. For d > d 
c 

when the Gaussian fixed point is stable, the harmonic approximation should hold and 

g ~ 0. It thus appears that for d = 1 and 2, clusters are "mutually exclusive", 

i.e., at any one time a given region of the crystal can only be occupied by a single 

cluster. In d = 4 [58], clusters of ordering and anti-ordering can interpenetrate 

and the idea of a cluster wall seems less important. 

The quite appealing picture reviewed above however, lacked experimental verification. 

Since the local potential V is of importance, it was natural to look for experi- 
s 

ments which can give information, if not on the V of a cluster, then on a closely- 
s 

related property: the local probability distribution P(~) of the order parameter 

~. In the following it is shown that EPR achieved this goal. 

b) EPR as a Probe for the Local Probability Distribution 

The accurate values of <~(T)> which led to the discovery of static critical pheno- 
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mena in SrTi03 were obtained by measuring Fe 3+ EPR line-positions. The EPR of 

Fe 3+ ions substitutional on B sites reflects the local orientation of B06 octa- 

hedra [4]. For a fixed direction O of the external magnetic field H in a (001) 

crystallographic plane, the secular resonance field H is given by [54] 
r 

Hr = H 0 (0,v) + A(0,v)~ [001] + 0(~ 2) (9) 

[001] 
where ~ is the octahedral rotation around the [001] axis and H 0 is the reso- 

nance field in the absence of rotation. The sensitivity parameter A(@) = 3H /38 
r 

measures the shift of the resonance field upon rotation by @ . H 0 and A both 

depend also on the applied microwave frequency. It could be shown that the second- 
2 

order term, proportional to ~ , becomes negligibly small for certain values of @. 

The constant A is largest for the Fe 3+- V 0 pair center due to the large anisotropy 
[ o o i ]  

of H 0 along the pair axis and the rotation ~ it measures is proportional to 

that measured by the Fe 3+ [4]. The Fe 3+- V 0 center consists of a trivalent iron 

impurity on a B site with a nearest-neighbor oxygen vacancy [55]. Its resonance 

pattern has been analyzed above and below T [54]. For H ]I [110] and K-band, 
c 

A = 26 Gauss/degree for an [001] octahedral rotation. The local random fluctuations 

#% are of the order of a degree, whereas the background linewidth is about 3 Gauss 

or 0.i0 degrees. Thus, owing to the high sensitivity of this center, the stochastic 

variation 6~(t) = ~(t) - # could be observed, as shown in Fig. 3. The possibly 

time-dependent departure 6H(t) from H 0 + A<~> is a random function proportional 

to 6~(t) [from Eq.(9)]. 

In magnetic resonance, one can distinguish two extreme cases with respect to the fluc- 

tuation time T of the order parameter. If T is much faster than the characteristic 

measuring time of the experiment T one calls it a "fast-motion regime", if T is 
m 

much slower than Tm, a "slow-motion regime". Tm is essentially given by the 

inverse homogeneous EPR linewidth T = I/Av =~/g6&H [ 56 ] .  Whereas the fast-motion 
m 

regime had been observed previously by NMR, it was the above-cited SrTi03 experiment 

[4] where, for the first time, a slow-motion regime close to T was reported. In 
c 

this case, the main critical part of the fluctuation time T of #(t) becomes quasi- 

static compared to the EPR measuring time T . This means that at each site L of 
m 

3+ ÷ 
an Fe -V 0 center, the local rotation ~ (R ,t) is seen at rest by the EPR experi- 

ment. Thus, the shape of the EPR line L(H) = L(~) [from Eq.(9)] is proportional to 

the probability distribution P(@) of the ensemble. In EPR, the derivatives dL(H)/dH 

of the absorption lines L(H) are recorded using Zeeman modulation. For those not 

familiar with the technique, dL/dH and L(H) are shown in Fig. ii for <~> = 0 

above T . Thus for slow motion, the curves are proportional to P(@) and dP/d~%, 
c 

respectively. From this proportionality, it also follows from Eq.(9) that the full 
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T > T  c 

d P//d ~ 

Fig. II. Probability distribution P(@ ) and the derivative dP/d@~ which in the 
slow-motion regzme are proportlonal to the line shape L(H~ and its 
derivative dL/dH, respectively 

EPR linewidth AH(T) in the slow-motion regime is proportional to the mean-square 

fluctuation amplitude [5?] 

AH (T) = 2 A < ~ 2> ~2 (I0) 
S 

Thus, at T the linewidth is always finite as is the local fluctuation amplitude. 
e 

On increasing the temperature above T the extra EPR linewidth AH (T) narrows 
C S 

down to the background width AH b (see Fig. 3). An analysis of this narrowing with a 

theory of Schwabl [58] suggested a crossover to the fast-motion regime [57] near 

T + 4 K. His theory was based on the phenomenological expression for the c.p. [Eqs. 
C 

(2) and (3)], but contained various other parameters. This crossover seemed further 

substantiated by a change of the lineshape near T + 3 K to a Lorentz form [34] 
C 

which is usually the hallmark for a fast autocorrelation time. However, in a very 

detailed recent study, the sensitivity parameter A(0) was varied at a set of fixed 

temperatures. It showed unambiguously that AH (T) is strictly proportional to 
S 

A(~) [34] (see Fig. 12). In the fast-motion regime, it would be proportional to 

A(e) 2 H(~)o Thus, one always sees static local fluctuations throughout the critical 
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regime for the secular part of the line, at least up to T + Ii K = 116 K. The static 
c 

Lorentzian shape away from T is possibly caused by impurity-induced strain fields, 
c 

the theory of which was developed in Ref. [34] as well. 

The background width AHb(@) varies also with O but in an entirely different manner. 

Therefore, AHs(0) and AHb(e) could be analytically separated, since for both 

variations analytic expressions could be computed. AHb(T) is determined by the 

spectral density 

J(~) = ~ S(q,~) 

q 

Fig. 12. 
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-i = 0.4 cm-! of the quasi-harmonic fluctuations of the at ~i = 5.2 cm and ~2 

octahedra. It is essentially a Raman nonsecular process between the ~ 92 ground 

state of the Fe3+(S = 5/2) ion and its two excited Kramers doublets ~ 3/2 and 

5/2 [55] located at energies {~1,2" Because the fluctuations are much faster 

than the reciprocal EPR linewidth, this background contribution is in the fast-motion 

regime which explains its narrow width of 2-3 Gauss. The latter is the limit of 

resolution of the local relaxation rate and corresponds to 6 MHz, as given in Table i. 

From the EPR linewidth data in a monodomain sample [59], using (9) the mean spread 

at T was 
c 

(< 6 9c2> )~2 = 0.4 ° 
2 92 

and ( < 6 ~a > ) = 0.15 

where c is the direction parallel to the monodomain axis and a is perpendicular to 

it [60]. Co~rtens [6i] confirmed these values by an independent birefringence experi- 

ment in which he observed a cusp near T . This optical experiment was certainly fast 
e 

as compared to the fluctuations involved. Thus, one can be confident that the EPR 

lineshapes reflect quantitatively P(@) in the critical region, i.e., as long as 

AHs(~) >> A~b(~). 

From the analysis of the lineshapes of the Fe 3+- V 0 center in the slow-motion regime, 

it was found that the probability P(9~) to observe ~Z deviated from the expected 

Gaussian, above and below T . Above T the shoulders of the lines fell more 
c e 

rapidly to zero than a Gaussian and P(~%) was better described by adding a term 

e-~% 4. Close to Tc, up to 20% of a normalized function of this form had to be used. 

This deviation from a Gaussian will be the basis for the new analysis described in the 

next subsection. 

For T < Tc where < ~> # O, and the symmetry is broken, an asymmetry in P(~£) was 

observed_ [ 8 2 ] .  T h e  a s y m m e t r y  a 1 a p p e a r e d  t o  b e  a c r i t i c a l  q u a n t i t y  d i v e r g i n g  f o r  

T ÷ Tc as as ~ [(T - Tc)/Te ] This prompted molecular dynamics simulations and 

a n a l y t i c  r e s e a r c h .  The  f i r s t  o u t c o m e  w a s  [ 6 3 ]  t h a t  a d i v e r g e s  a t  some  t e m p e r a t u r e  
. s , 

T ¢ T b e c a u s e  P ( ~ )  e x h i b i t s  a d o u b l e - p e a k  s t r u c t u r e  d i s a p p e a r i n g  a t  T = T . The 
e 

r a t i o  T / T  w a s  d e p e n d e n t  o n  t h e  m o d e l  p a r a m e t e r  c h o s e n  a n d ,  i n  t h e  d i s p l a c i v e  
c 

l i m i t ,  e v e n  T / T  ~ 1 c o u l d  o c c u r ,  w h e r e a s  f o r  o r d e r - d i s o r d e r  s y s t e m s  a l w a y s  
e 

T > T . I n  a s u b s e q u e n t  e f f o r t  [ 6 4 ]  e m p l o y i n g  R-G t e c h n i q u e s  T > T , i . e . ,  a 
c c 

d o u b l e - p e a k e d  P ( ~ )  f o r  T w a s  d e r i v e d  f o r  d = 1 b u t  f o r  d = 3 t h e  a n s w e r  
c 

r e m a i n e d  o p e n .  H o w e v e r ,  i n  t h e  l a t t e r  p a p e r  t h e  q u e s t i o n  o f  a p o s s i b l e  d i s p l a c i v e  

o r d e r - d i s o r d e r  c r o s s o v e r  w a s  p o s e d ,  t h e  n o t i o n  o f  w h i c h  we g a v e  i n  S e e .  I V a ) ,  a n d  

e x p e r i m e n t a l  p r o o f  i s  r e v i e w e d  i n  t h e  n e x t  s u b s e c t i o n .  
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c) Evidence for Short-Range Order at Tc in SrTiO 3 

Motivated by the cluster picture, it has been supposed most recently that the time- 

dependent local scalar coordinate ~(t), whose ensemble average is the order parameter 

for the displacive SPT, can be written in the form [65] 

~(t) = o(t) + y(t). (Ii) 

Here, the coordinate y(t) is taken to be a Gaussian random variable, with corre- 

lation time and mean-square amplitude (<y2>)~2: this variable describes the Ty, 

quasi-harmonic fluctuations about the instantaneous quasi-equilibrium position set by 

the value of the coordinate o(t), which reflects the influence of the clusters, y 

may also include the distribution resulting from impurities and strains which are 

always present in a real crystal. The simplest variant (sv) of the cluster picture 

suggests that the coordinate o be taken to undergo Markovian hopping between two 

values, ~ °0' with a transition probability per unit time I/T . This is clearly an 

oversimplification: the large thickness of cluster walls in displacive systems, 

demands a more refined variant (rv) of the cluster picture, allowing for a continuous 

distribution, P(~). 

From a comparison of the temperature dependences of the order parameter < ~(t)> and 

that of the soft mode ms(T)' one can estimate °0 as follows: for T < Tc, the 

long-range order < ~>~r in monodomain single crystals as measured by EPR, was found 

by Steigmeier and Auderset [86] - and confirmed by Yacoby [67] - to be proportional to 

(T) = 0.69 <~(r)> ~r' (12) 
s 

where m is measured in THz and ~ in angular degrees [68]. At T the soft 
s c 

mode is not frozen-out due to the existence of clusters which prefigurate the low- 

temperature phase. ~s~(T = T c) = 0.13 THz [6,36] due to the existence of the short- 

range order <~(T)> . One estimates from Eq.(12) 
sr 

< @(T)> = 0.19 °. (13) 
sr 

High-resolution structural X-ray studies attempted to measure this quantity [89]. 

However, X-rays and neutron scattering probe the crystal much faster than the harmonic 

thermal fluctuations of the lattice. The latter have amplitudes for the rotational 

order parameter of (<y2>)~2= 2.1 ° [69]- Thus, <y2> /<~(T)>2 = 122 and X-ray 
sr 

and neutron-scattering structural investigations which determine the probability dis- 

tribution function through its Fourier transform (the Debye-Waller factor) cannot, in 

general, be expected to detect the cluster-induced nonlinear local behavior. The 

quasi-harmonic fluctuations y mask the nonlinear ~0 character. 
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Consider now EPR as a probe to determine P(~). We have seen in the preceding sub- 

section, that the quasi-harmonic fluctuations with spectral density J(m) are only 

contributing to the non-critical background EPR linewidth AHb(~) ~ 2 Gauss, called 

non-secular fast in Ref. [84]. In other words, for the discrimination against the 

harmonic fluctuations it is sufficient that P[o(t)] can be probed in the present 

case. 

There are, however, limitations to this undertaking for the following reasons: a) 

(Os2T 2 T ) The ratio r = /<y > Y >> i has to be fulfilled. This is easily the case 

because the cluster fluctuations ~ have been slowed down by impurities to a fre- 
o 

quency slower than A~(@) g~/h ~ 6 MHz as compared to Ty which should be, at most, 

lo-llsec from the soft-phonon width [8]. b) The distribution of P(y) also contains 
2 2 

contributions from static strains Yst thus < Yst > ~ G 0. As we shall see, this 

limit is more stringent than another limitation discussed in Ref. [65]. c) If the 

sensitivity parameter B = ~m/~ = A Hr ~g/9~ gets smaller than i/o0To, i.e., B (or 

A) is too small and T too fast, the double-peaked form of P(~) is erased. Now 
o 

B = 1.6 × 108sec/deg [34] and, expecting G 0 = 0.2 ° with To > 10-7sec' 

1/(o0.10-7 ) < 5-107sec/deg < B is fulfilled as well. 

We now return to discuss the distribution function P(o) itself in EPR, as recently 

published. A comparison of the derivative of this function at T with that of a 
c 

Gaussian of the same peak height, clearly reveals the non-Gaussian nature of P(o) 

(Fig. 13c). The extent of its anharmonic character is characterized by its repre- 

sentation as a superposition of two symmetrically displaced Gaussians for y (Fig. 13a), 

whose separation provides one adjustable parameter a 0 . The Ising variable G 0 is 

chosen so as to optimize the corresponding representation of the derivative spectrum 

2 ~ o02 (Fig. 13b). Note that <Yst > and condition b), the strain-induced broadening, 

limit the resolution of the experiment. 

These results established, unambiguously and for the first time, the existence of 

local precursor order persisting for times long in compairson with 10-7sec. More 

explicitly, Fig. 13 suggests that, near but above T = 105.3 K, the oxygen octahedra 
c 

in SrTiO 3 oscillate typically about quasi-equilibrium positions displaced by 

G 0 ~ 0.22 ° from the high-symmetry position. The striking accord with the value in 

Eq. (13), derived from ~s~ constitutes strong evidence of the overall coherence for 

the displacive order-disorder crossover as an intrinsic property of displacive phase 

transitions on approaching T . 
c 

Starting from the Hamiltonian Eq. (6) Bunde and Lam [?0] calculated rigorous bounds for 

the ratio <~(T = O)>2/ < 6~(T = Tc)2>< 3 where the symbols < > represent 
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classical thermal averages. In comparing their result with the measured <~(T = 0)> 

2.1 ° < 6~(T = Tc)2 > data from EPR, they claimed a violation of their lower and 

bound by a factor of 8. They therefore concluded that the Hamiltonian (6) is not 

applicable to SPT studies. What these authors did not recognize is the motional 
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Fig. 13. a) The experimental distribution function P(o) at T = 105.5 K (solid 
line) together with two displaced Gaussians with whose superposition (not 
shown) the spectrum is modeled, b) The derivative of the experimental P(o) 
(solid line), and of its double-Gaussian representation, c) The derivative 
of P(o) and its single-Gaussian representation, Ref. [65] 



240 

narrowing of the y(t) components of ~(t) occurring in EPR. If the proper X-ray 

value of <~(T = Tc)2> ~2 = 2.2 ° is used, which yields the total fluctuation 

entering the theory, their upper bound applies and their criticism is pointless. 

V. Hydrogen Bonded Ferroelectrics 

a) The Disappearing Central Peak in Light Scattering 

Lagakos and Cummins [71] were the first to report a critical central peak in a 

hydrogen-bonded ferroelectric, the well-known KH2PO 4. In their Brillouin experi- 

ments, a quasi-elastic component was observed to increase dramatically near the 

122 K phase transition. The peak was narrower than their experimental resolution 

width of lO-9s. This was much narrower than predicted by the paraelectric coupling 

theory of Cowley et al. [?2]. More recently, Durvasula and Gammon [73] reported a 

speckled interference pattern in the scattering column of their Brillouin experiments 

in the same crystal. This implies that the scattering centers have time-independent 

amplitudes and positions, i.e., the central peak is of static origin. 

Courtens [74] then assumed that the deuterium, present in natural abundance, may be a 

Halperin-Va~a center in hydrogen-bonded ferroelectrics; the deuterium impurity 

relaxing much slower than the intrinsic tunneling hydrogens. He compared the central- 

peak intensity, observed by Lagakos and Cu~nins [71], and Durvasula and G~mmon [73], 

to a mean-field theory which takes into account the deuterium impurity. However, most 

recent experiments show that the deuterium does not freeze-out either [75] and is not 

the cause of the central peak in KH2P04. The quasi-elastic central peak in the 

paraelectric phase could be suppressed to 2% of its initial value by annealing for 

18 h at 140°C. The soft-branch Brillouin spectra could then be fitted with a classical 

coupled-mode expression without any deviation larger than 1% that would suggest 

additional dynamic contributions, and with parameters in good agreement with available 

data. 

The very recent findings of Courtens in KH2P04 are in line with the previous ones 

in KH3(Se03) 2 of Yagi et al. [?6]. In this material, a critical central peak was 

also observed in the Brillouin spectrum of as-grown crystals. However, after repeated 

thermal cycling through T this central peak almost disappeared (see Fig. 14). Thus, 
e 

the origin is definitely of extrinsic nature. Owing to this disappearance, strains 

coupling linearly to the order parameter have been invoked. They are released when 

the sample remains below T for sufficiently long. This thermal cycling process is 
c 

ineffective in KH2P04 to reduce the c.p. [75] and the thermal anneal used for 
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The central peak of KH3(Se03) 2. a) The Brillouin spectra associated with the 
soft acoustic mode observed with the as-grown sample, b) The spectra observed 
after keeping the sample below -30°C for about 24 h, Ref. [?6] 
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KH2P04 suggests local cancellation of intrinsic defects. 

In squaric acid (C404H2) high-resolution NMR techniques have revealed static low- 

temperature clusters above the phase transition [77]. Their local reorientation time 

was found to be longer than 0.I sec. Those near-static clusters were found to coexist 
-5 

with dynamic clusters reorienting faster than i0 sec, and it was therefore assumed 

that impurities act as pinning points. This result thus falls into the same picture 

as arrived at by light scattering. 

b) EPR of Halperin-Varma Centers 

A crossing over from high- to low-temperature EPR spectra was first observed for the 

As04-4 radical by Blinc et al. in KH2As04 [?8]. Crossover was detected in the 

Zeeman-splitting g tensor as in the hyperfine interaction 2. It was ascribed by 

this group [79] and especially by Dalal et al. [80], until recently [81], as resulting 

from intrinsic slow polar fluctuations. However, Lamotte et al. [82] had already 

pointed out several years ago that the high-temperature constants of the axial g 

and A tensors observed at low temperatures. If they reflected intrinsic fluctua- 

tions, they should differ, owing to the existence of the four lateral configurations. 

Lamotte et al. concluded, quite correctly, that the fluctuations observed were not 

intrinsic in nature and that a perturbed zone around the As04-4 existed with dif- 

ferent local dynamics in the paraelectric phase and with different local order 

in NH4H2As04. 

-4 
More recently, Adriaenssens [83] amplified the view of Lamotte et al. on the As04 

center. He based this on applied electric-field experiments. Upon reversal of the 
+ F 
E, the two local As04-4 configurations can only field be switched below T but 

e 
not above T F. Thus, he concluded that the two polar Slater configurations only 

c F 
reverse through the intermediary of the surrounding domains existing below T 

-4 c 
This means that the AsO 4 center is coupled mainly to the long-range dipolar field 

in the lattice and less via the short-range proton coupling. 

-4 
Adriaenssens described the local polarization dynamics of the As04 for T > T c 

in a passive manner as clusters. We replace this by the self-consistent approach of 

Hdck and Thomas [25] where the center not only reacts but also acts on its surroundings 

and can possibly freeze-out locally. In this sense, it is a Halperin-Varma center. 

-4 
The well-behaved motionally-narrowing EPR data on the As04 radical could be 

accounted for by a single thermally-activated relaxation time T(T) = TOex p E/kT 

[82]. This may be taken as an indication that no local freeze-out occurs, the impurity 



243 

being coupled sufficiently strongly to other temperature-independent modes. It thus 

behaves as foreseen by Halperin and V~ma [28]. Therefore, for T ÷ TcF a critical 

collective slowing-down motion should occur due to the soft-mode coupling of Halperin- 

Varma character [28], and an extrinsic collective central peak is present. Its 

intensity depends on the concentration of the defects, however this does not apply 

for the local relaxation rate of the particular defect, as long as the correlation 

length ~ is smaller than the distance between defects. The latter property has 

-4 
been verified for the AsO. -polar centers in 15% NH4H2As04 - 85% NH4H2P04 crystals, 

for concentrations of i0 I~- i018cm-3 from I00 to 180 K above T (i.e., very small 
c 

6)[84]. The important distinction between the local EPR relaxation rate observed at 

the defect and collective central-peak width F was not made in the above work nor 

in a recent paper by Blinc et al. [85]. Thus, the conclusions reached in these 

papers are not correct. In the paper by Blinc et al., a dependence of the local 

relaxation rate on Tc in mixed crystals of NH4H2As04 - NH4H2P04 and KH2As04 - 

KH2P04, has been observed. This is expected on the basis of the self-consistent 

H~ck-Thomas local-defect theory. A full-sized isotope effect had been previously 
-5 

reported for the Cr04 center, to be discussed next. 

EPR experiments of paramagnetic Cr 5+, substitutional for As 5+ in KH2As04 and for 

pS+ in KH2P04, were reported by ~211er et al. [86]. They showed the existence of 

slow reorientation times of 10-8s below a dynamic reorientation temperature T *AF= 

F F 
60 K and I00 K above the Curie temperature T , shifting proportional to T 

c c 
upon deuteration. T *AF is defined as the temperature at which the orientation time 

-I 
T of the center becomes comparable to the time-scale of the EPR experiment A~ = 

10-8sec. Figure 15 shows schematically the isotope shift observed on the ferroelec- 

tric Curie temperatures T F and T *AF. Upon deuteration, T F and T *AF are 
c e c 

shifted by similar amounts. From the g values, the ground-state wave-function d I 

of dx2_y 2 character was deduced [8?]. Then, ~illard et al. [88] showed conclusive- 

ly from ENDOR that the dx2_y 2 function couples with two near protons in lateral 

configurations indicating a Halperin-V~ma-type center. A lateral configuration 

determines an antiferroelectric character locally. This is expressed by the notation 

T *AF. In such a lateral configuration, each of the two near protons H + can get 

2 2 
maximum electrostatic interaction with one negative lobe of the tilted x - y wave 

2 y2 
functions. These x and lobes are oriented at 90 ° from each other. Owing to 

the essential interactions of the dx2_ y2 wavefunction with two lateral protons at a 

time, a coupling to the rest of the lattice occurs via these protons to the next 

nearest-neighbor ones by their reorientation along 0 - - H - 0 bridges, i.e., 

clearly by short-range interaction Jsr" The latter is also mainly responsible for 
F AF 

the shift in the bulk ferroelectric T and antiferroelectric T [89]. Therefore, 
c c 
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Comparison of the ferroelectric Curie temperatures T in KH~P0, a6d 
. . . .  e g 

KH As0 and thelr partzally-deuterated isom2~Rhs, wlth the antzferro- 
eiectrlc Cr EPR crossover temperatures T . The antiferroelectric 
Curie temperatures T in normal ~ par~ially-deuterated NH,H2AsO. are 
• . _ > . 4 4 
included as well. The distances T - T 0 are marked with arrows. 
After #~211er and Berli~er, Ref. [89] c 

the remarkable shift upon deuteration in local-dynamic slowing-down of the (CrO4)H 2 

center in approx ima te  p r o p o r t i o n  to t he  f e r r o -  and a n t i f e r r o - e l e c t r i c  b u l k  T F ' s  
c 

results from the isotope effect of the short-range interaction J for bulk and 
sr 

i m p u r i t y .  

The observed activation energies of the local lateral reorientation times are of the 

order of 0.2 eV in pure and mixed crystals of KD2As04 [89] and KD2PO 4 [86]. This 

is similar to what was found for the As04-4 center, and is of the order of magnitude 

required by the Halperin and Varma theory and by T F's of 200 K. The As04-4 
e -3 ÷ ÷ 

couples mainly to q = 0 ferroelectric excitations and the CrO 4 to q = ~/a anti- 

ferroelectric ones. The As04-4 radical interacts via long-range dipolar and unipolar 
-3 

fields [83] due to its extra negative charge. For the Cr04 it is the dx2_y 2 

wave function coupled with nearest protons and the short-range interaction with those 

in neighboring cells. 
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It should be noted that in contrast to NMR, the EPR always sees the conformation of 

the next-neighbor ions to 80%. This is also true for Fe 3+, Cr 3+ and Cu 2+ [90,91]. 

The absence of any evidence for slow motion in their spectra in hydrogen-bonded 

crystals simply means that they are not Halperin-Varma centers, and no intrinsic slow 

motions of time constants of 10-8see, I00 K above Tc, are present [85]. 

c) Nuclear Magnetic Resonance (NMR) in KH2As04 

A decade ago Blinc and Bjorkstam [92] reported in the paraelectric phase of KH2As04 

and RbH2As04, an 75As NMR spectrum which has the symmetry properties of the ferro- 

electric phase but differs from that in the latter phase. We call this spectrum here- 

after B, due to its discoverers, and the one in the ferroelectric phase spectrum F. 
+ + 

As there are two polarities, we have actually to distinguish between B- and F-. 

The spectrum observed in the paraelectric phase, well above T , is termed P and is 
c 

axial along the c-axis. It reflects the intrinsic paraelectric phase and results from 

the appropriate time average over all possible rapidly-fluctuating polar and nonpolar 

protonic Slater configurations of the AsO 4 tetrahedron and its four neighboring 

protons. 

A first interpretation of spectrum B was attempted by Bjorkstam [93] in terms of the 

Zeeman energy ym perturbed by stochastic quadrupolar interaction due to ferroeleetric 

polar configurations. This theory did not yield quantitative agreement with the 

observed anisotropy. In contrast, more recently, Adriaenssens [94] could calculate 

the anisotropy quantitatively by using a model in which he assumed that the 75As 

nuclei see (during the lifetime of their spin state of 10-3sec) with a 90% probab- 

ility, the six-possibly fast-fluctuating protonic Slater configurations of the 

(As04)H 4 group, yielding for p = 100% spectrum P, and for i - p = 10% of their 

lifetime one specific up- (or down-) polarized configuration F ±. The averaging is 

such that a particular nucleus does not see for a polarized configuration F ~, longer 

than lO-5sec at a time. 

From this quantitative agreement Adriaenssens assigned spectrum B as resulting from 

intrinsic fully-polarlzed clusters moving very rapidly in a "sea of paraelectric 
+ 

matter". The spin lifetimes involved in average spectra P and F-- , as compared to 
+ + 

spectrum B--, are such that the lifetime for the ferroelectric clusters F-- is 10 -2 
-3 

to i0 sec. Such lifetimes have also been found from dielectric measurements in the 

same crystals. Thus, his interpretation has been taken over to a certain extent by 

Blinc [95], as proof for the existence of intrinsic fully-polarized ferroeleetric 

clusters in KH2AsO 4. More recently, Blinc and his collaborators [95] found a dip in 
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the spectral density J(~) for ~ < 103 proving the existence of slow ferroelectric 

fluctuations in agreement with the observation of spectrum B. However, in deuterated 

KD2AsO 4 no dip in J(~) nor spectrum B was detected. 

If the spectrum B is indeed intrinsic and results from the anharmonicity of the 

lattice, it is not easy to see why it is not observed in a deuterated crystal. Of 

greater importance is that such slow intrinsic dynamics have not been reported by 

either NMR or dielectric studies in other well-annealed and clean hydrogen-bonded 

ferroelectrics. 

In proposing the rapidly-diffusing intrinsic ferroelectric clusters above T 
c 

Adriaenssens invoked the recent molecular-dynamics studies and the analytical investi- 

gations of Krumhansl and Schrieffer [i8]. However, the picture which emerged from 

these studies is that of up- and down-polarized clusters separated by soliton-like 

walls. This is at variance with fully-polarized ferroelectric clusters moving rapidly 

in a sea of paraelectric matter. Moreover, the speed of the clusters deduced is 

orders of magnitude faster than what intrinsic three-dimensional molecular-dynamics 

studies yield. Furthermore, no quantitative measurement of the ratio of spectrum B 

to P as a function of temperature has been published for T > T . For intrinsic 
c 

clusters one also expects, according to the theory of Binder [98], spectrum F to be 

present for T > T . Crossing over to spectrum F is expected at T > T for 
,c c 

AwT ~ i, where (T - Tc)P= Aw and p = 1 for a uniaxial ferroelectric. Aw in the 

present case is the quadrupole splitting and depends on the direction of the external 

magnetic field to the crystal axis. For instance, in the case of the Halperin-Yarma 
-3 

CrO 4 center, p ~ 2.2 has been found thus definitely proving its extrinsic char- 

acter [89]. 

-2 
These considerations indicate that the observed ferroelectric clusters of I0 sec 

l i f e t i m e ,  a re  s p e c i f i c  to the  Klt2As04 and RbH2As04 c r y s t a l s .  F u r t h e r m o r e ,  upon 
+ 

application of a polarizing electric field E in the paraelectric-phase, spectrum 
+ 

B was enhanced over spectrum B-, but upon switching E + off, the disproportion- 

a l i t y  o f  B + Versus B- only disappeared a f t e r  about a month! [ 9 7 ] .  This  o b s e r v a t i o n  

is reminiscent of the pre-anneal area in KH2P04 light-scattering studies. 

d) A Speculation 

The experimental facts on light-scattering [Sec. V a)], magnetic resonance [Sec. V b) 

and c)] as well as dielectric dispersion measurements - reviewed by Peterson [98] - 

all indicate the extrinsic character of the central-peak phenomenon in the restricted 

sense used throughout the present review. One is then led to the question of why no 
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intrinsic c.p. intensity in hydrogen-bonded uniaxial d = 3 ferroelectrics is 

observed above T , whereas in SrTi0_ and related compounds, one finds the finite 
c 

soft phonon at Tc, Ws ~2(T = Tc) = 62(Tc )" 

We speculate - amplifying a suggestion by Courtens [75]- that this may be due to the 

critical dimensionality d of the systems. In SrTi03 and related compounds 
c 

d = 4 [99]. These antiferrodistortive systems are clearly short range in character 
c 

as opposed to the dipolar ferroelectric systems. Thus, for hydrogen-bonded uniaxial 

n = I, KH2P04 ferroelectries, dc= 3 if one neglects the piezoelectric coupling to 

acoustic modes. However, this coupling is so strong that one cannot safely do so; 

including it d is pushed down to 2.5 [100]. Therefore, in real crystals with 
c 

d = 3, for the SrTi03-category , the inequality d < dc holds and for the KH2P04- 

category d > d . 
c 

From R-G theory we know that for the case d < de, correlated fluctuations near T c 

are relevant and determine the behavior of the system [99]. In the case of anti- 

ferrodistortive transitions these fluctuations result in short-range correlated 

regions and prevent the freezing-out of the soft phonons. Thus, they cause an intrin- 

sic central-peak phenomenon [52]. For KH2P04 on the other hand, with d > dc, the 

Gaussian fixed point is stable. Thus, the fluctuations of the order parameter are of 

Gaussian uncorrelated character [I01]. This is what mean-field theory always assumes. 

The soft phonon or the collective relaxation of the system should be described by the 

latter, as observed. If the system's dimensionality is marginal, i.e., d = d as 
c 

for TGS, logarithmic corrections to the Gaussian fixed-point behavior are predicted 

[i02] and observed [103]; thus we also expect an intrinsic c.p. to exist. In com- 

puter simulations for a short-range system with d = 4, this was found [20]. As was 
c 

emphasized in Sec. IV a), the lattice dimensionality parameter in RG e = d - d, 
c 

tells one whether or not sharply-defined clusters occur on a local scale. For 

positive and of order one near T , the cluster picture is dominant whereas for 
c 

< 0 it is not relevant. It may however be that the above considerations are valid 

rather in an asymptotic sense, i.e., the c.p. phenomenon is observed for e < 0 but 

disappears only for -e > I, according to Schneider [i04]. 

At incommensurate SPT within Landau theory, c.p's are expected [52], and most recent 

experiments indicate their presence [105]. They result from the phason mode becoming 

soft. Its origin being phase slips (or phase solitons) between commensurate domains 

of the lattice. 
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SYSTEMS WITH QUENCHED RANDOM IMPURITIES, 
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BP n°2, 91190 G i f - s ~ - Y v ~ e ,  France 

ABSTRACT 

Systems with quenched random impurities are briefly discussed. Landau-Ginzburg 

systems with (i) random magnetic field, {~) random temperature, {~) random 

temperature and no coupling (localization model). Spin systems with random bonds 

(spin glass model). Dynamics is used to derive an equation of state and time evolu- 

tion of a hypothetical frozen-in phase. Results are compared with those obtained 

with replicas. Mean field and fluctuations results for the Edwards-Anderson model 

are reviewed, pointing to an unsatisfactory situation. The low temperature descrip- 

tion that uses the frustration concept of Toulouse-Anderson for spin glasses is 

also described and discussed. 
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! . INTRODUCTION 

Critical properties of pure systems, both static and dynamic, are by now fairly 

well understood. Likewise for systems with impurities that are mobile on the scale 

of usual observation times. These "annealed" impurities act as ordinary degrees of 

freedom and their effect on critical properties has been elucidated by M. Fisher [IJ 
F 1 

For example, critical exponents are unchanged if the specific heat exponent (of the 

host system) ~ is negative. They undergo a simple renormalization if ~ is positive. 

The situation is much more complex for frozen or quenched impurities. Despite 

abundant work in the last years, we do not yet understand, in particular for spin 

glasses, what is really going on. For the interested reader, this is a lucky period 

that has seen, in the last few months, the flourishing of a beautiful set of notes 

by Anderson [2], Joffrin [3], Kirkpatrick [4], Lubensky [5], Thouless[6](1978LesHouches 

Session), and reviews by Blandin [7J and by Binder and 
P n 

Stauffer [8] . 

The present contribution begins with a brief overview of quenched systems (§ 2) 

with random magnetic field, random temperature or potential (and its limiting case 

of pure random potentials as occurs in the localization problem), and finally random 

bonds as an idealization of spin glasses. In dealing with quenched random systems, 

two techniques are available : replicas and dynamics (§ 3) . We present how the dyna- 

mic approach allows to write an equation of state and its time evolution for hypo- 

thetical frozen-in phase in Landau-Ginzburg systems (random field or temperature) 

(§ 4) . Its relation to results obtained via replicas is displayed. The random bond 

(Edwards-Anderson) model is then treated with replica techniques and results are 

reviewed for mean field, fluctuations and renormalization group thereof (§ 5) . In 

view of the confused situation existing for the presumed ordered phase, the low 

temperature approach based on frustration is reviewed (§ 6) with some emphasis on 

the role played by defects (§ 7). We end up by pointing to a few well defined 

puzzles that would deserve further work (§ 8) . 

2. QUENCHED RANDOM SYSTEMS : AN OVERVIEW 

We start from the pure system as given by 

% =  ~ Jj£ oj.~ - h..o. (2.1) 
j~  J J 

the nearest neighbor classical spin interaction, or from the Landau-Ginzburg-Wilson 

Hamiltonian that is known to be equivalent for most critical properties of ordinary 

phase transitions 

u o ~ = ; ddx {~ ~(-V2+ro)~ + ~T (~.~)2 - h.~} (2.2) 

Adding random impurities into (2.1,2) will manifest itself [9] by the fact that the 
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parameters a (a=hj , Jj% or h, ro, Uo,...) acquire a space (or site) dependent 

random part a ÷ a+aR(x) that is we have, 

These new random degrees of freedom are then characterized by a probability law 

~(aR(x)). Experiments are done on one given system , that is with one given set of 

values {a R} , values determined by the way in which we prepare the system e.g. 

fast cooling. However an argument due to Brout [10] shows that the thermodynamic 

average of an observable A for a large system, <A>aR (i.e. for a given set of {aR}) 

is identical with its probability-weighted average* 

<A>aR ~a R (a R) <A>aR <A> (2.3) 

This is fortunate because <A> is usually easier to deal with than <A>aR . 

i) Random magnetic ~i~d : This is the simplest type Of randomness. We have 

~R = I h..O. (2.4) 
j JR j 

or with continuous fields 

~R = I ddx hR(X)" ~(x) , (2.5) 

and we may take a probability law which, in its simplest form, is given by a Gaussian 

distribution 

<hR> = 0 (2.6) 

<h~(x) h~(x')> Ah ~ab ~(x-x') (2.7) 

a) Low~ critical dime~ion : If the field is strong, clearly the spin field 

will align along the magnetic field destroying the order (e.g. ferromagnetic) that 

exists below T . The order is also destroyed for infinitesimal h R if the systems 
c 

reaches a lower free energy by breaking up into small domains. A heuristic argument, 

due to Harris [11] considers two neighboring cells (of linear dimension L) where 

<hR>cell is up and down respectively and balances the energy gained by aligning the 

spins along <hR>cell inside each cell, i.e. 

(A h Ld) I/2 

against the energy cost of creating a wall between the cells. Namely within a factor 

d-2 proportional to the spin coupling, Ld-lfor an Ising spinTL for a spin with n> I. 

The order is thus unstable to the presence of a small random magnetic field at 

Strictly speaking the argument fails as the correlation length becomes infinite. 
It is generally assumed to work in practice. See section 1.1 in T. Lubensky, Ref.[5]. 
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dimension d < 4 (for n~2) and d < 2 (for n= I) this last boundary being modified by a 

more elaborate examination. 

b) T~e long-range ord~ : Whatever the dimension, at low T, the spins are then, 

either all aligned (ferromagnetism) or following the random magnetic field. Being 

quenched, the field has no time dependence and as a result one always has ~e £ong- 

~nge ord~, i.e. in the Landau Ginzburg case 

<~(xt) ~(x't')>t_t, .~ # 0 (2.8) 

%i) Random bon~ : This is, as is well known~the most interesting case. Indeed 

magnetic impurities (typically Fe, Mn) in normal metals (Cu,Au) interact via conduc- 

tion electrons, resulting, for large separations Irl-r21, in the Ruderman-Kittel- 

Kasuya-Yosida interaction 

J cos 2kFIrl-r21 

(kFlrl,r2l) ~1.~2 (2.9) 

k F is the Fermi vector of the conduction electrons. At concentrations large enough, 

impurities are close by, the interactions remain ferromagnetic. At low concentration 

(a few percent) impurities are on the average at distances where the sign of (2.9) 

fluctuates. This is a system where interactions are randomly ferro-and antiferro- 

magnetic, the celebrated spin-glass. This situation is idealized by Edwards and 

Anderson[121rl as a system with spins on a lattice with a nearest neighbor random 

coupling jR j% . The probability law~(J R) that governs the coupling is taken either 

to be Gaussian as above or in the so-called ideal spin glass as jR = ±l with equal 

probability. The emphasis is on c0mp~0n. As the temperature is lowered, spins 

receive contradictory orders to align along this or that direction, the result is 

a freezing-in at a critical temperature T . The freezing-in at T shows no space 
g g 

long-range order due to the randomness in the distribution of ferro-and antiferro- 

magnetic bonds. Edwards and Anderson characterize the new phase below T by time 
g 

long-range order, that is by the "order parameter" 

<~.(t)j oj(t')>t_t, ÷~ = Qj (2.10) 

New features that appear both in experiments [13'3'4] and Monte Carlo computations [8] 

include 

- a sharp cusp in the zero field magnetic susceptibility at T , that is rounded 
g 

off by magnetic field 

- no cusp or singularity in the specific heat 

- below T hysteresis with non exponential relaxation 
g 

~) Random temp~a£~%e {or p0te~) : Transformation of the spin-variable Hamilto- 

nian (2.1) into a continuous field-variable Hamiltonian like (2.2) introduces a non- 
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linear dependence into Jjz . One may think that we may obtain an equivalent physical 

description by taking all the couplings (ro,Uo,...) as random variables * i.e. 

~R = f ddx {½ [kR(X)(V~0)(V~0)+ VR(X)~0.~9] + UR(X)(~0.~0)2+...} (2.11) 
4' 

It is immediately recognized that if one wants to investigate the effect on the 

ferromagnetic critical region only the random temperature (or potential) term 

VR(X) ~.~ is relevant. Let us again take ~J(VR ) as Gaussian 

<VR> = 0 

<VR(x) VR(X')> A v ~(x-x') 

(2.12) 

(2.;3) 

and one has local In random pockets of space the local temperature falls below T 
e 

formation of Spon~lneogu3 random microferromagnets, that is if the temperature is low 

enough, and the density of impurities (~Av) is not too small. These micromagnets 

act in turn as random sources for the rest of the system, inducing thus random but 

frozen alignement as when one has a quenched random magnetic field. If this is true, 

for concentrated enough impurities, below a freezing temperature Tg, one may expect 

time long-range order 

<~(xt) ~(x't')>t_t, ~ Q(x-x') (2.14) 

and at the same time, no space long-range order 

<~(xt)> = 0 (2.15) 

A slightly more elaborate form of the above Harris argument** shows however 

that when ~ < 0 the random temperature impurities are not effective (weakly random 

systems). When ~ > 0 , for small enough values of the concentration a new fixed point 

arises that governs critical properties, giving rise to new exponents (Fig.l). 

If the concentration is increased the flow lines lead the system in a run-~y 

region where hopefully it is then characterized by time long-range order (2.14). 

We shall see however that, in the ordered phase, the system is plagued by instabi- 

lities. 

*With appropriate stabilizing higher-order terms to keep (2.11) meaningful. 

**See e.g. section 1.2 in D.J. Thouless, ref.[l§]. 
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/ r~.~io~ "/ 

F i  9 . 1  - F l o w  l i n e s  i n  A v , u s p a c e  ( a > 0 ) .  F i x e d  p o i n t s  : R : r a n d o m ,  P : p u r e ,  
G : G a u s s i a n ,  U : u n p h y s i c a l  a f t e r  A h a r o n y  [ 1 4 ] .  

iv) P~e random pote~h~ : A limiting case of the above situation is obtained when 
4 . 

the (repulsive) coupling in ~ is set equal to zero. One has a non-interacting system 

in the presence of a random potential VR(X) , which is the limit of the tight binding 

Anderson model[|6]as the lattice spacing tends to zero. 

If E l , fl(x) are eigenvalues and eigenfunctions of -V 2+VR(x) , then one has 

fl(x) fl(x') 
<~(x) ~(x')> = X (2.16) 

l E - E l + io 

where the bar stands for average over the VR(X) distribution and we write -E instead 

of r , E being the energy. It follows from (2.16) that the level density o(E) takes 
o 

the form 

0(E) = 7 -! Im <~(x) ~(x')> = ~ 6(E-E I) (2.]7) 
l 

The level density of the free system is ~ /E (in dimension d=3). The presence of 

the random potential allows for bound states in the E< 0 region. As a result p(E) 

develops a tail into E<0 that extends to infinity if the probability law ~J(VR ) ~  is 

long tailed, e.g. for the Gaussian white noise potential as in (2.13). If j~(VR ) is 

short tailed, p(E) vanishes below E , the bottom of the modified band. 
o 



258 

,' E~,,JeJ. 
o a' 

Fig.f - Side of the band modification by random potential V R . 

The E!O region (due to bound states) is the region of localized states. For E~0 

we have extended states. Somewhere in between lies the "mobility edge" E that sepa- 
c 

rates between localized and delocalized systems. We see below how the behavior in 

the tail is obtained(IEl 2-d/2 >>Av ) as a mean field result and fluctuations thereof. 

The critical behavior around E is a much more delicate problem. 
c 

v) Oct~ook : After this overview from far away we want now to take the usual steps 

involved in studying critical phenomena : mean field, fluctuations, renormalization 

group. The task is here much more difficult for several reasons that are both physi- 

cal and technical. [£I Physical, because we are not completely sure that the time 

long-range order parameter is sufficient (or may be even relevant) to describe what 

happens at low temperature (below Tg). For this reason we also describe the view 

given by low temperature approaches together with the type of "order parameters" 

they may suggest. {~) Technical, this is because we deal with quenched systems and 

averages have to be taken on observables as in (2.3) (not on the partition function). 

More of this now. 

3. REPLICAS VS DYNAMICS 

For quenched averages as in (2.3), if A is the free energy, we need to compute 

f ~R{O ' m R } 

! -  - ! ~a R T in Z T ~ ,aR) In tr e (3.1) 

Edwards and Anderson [|6] circumvented the difficulty of having to take the log before 

averaging, by introducing n identical systems (replicas) and using the identity 
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(Z n) n= 0 In Z ~ (3.2) 

At the same time they had to replace the time long-range order parameter (2.14) 

which is presumed to describe the frozen-in phase 

by 

<Oj(t) Oj(t')> = Qj (3.3) 
t-t' ÷oo 

<o~ oB > = ~B J J ~# B QJ (3.4) 

We shall see below that the (average) order parameters (3.3) and (3.4) are equivalent 

in the n=0 limit. Of course one is always reluctant to discard a bona fide physical 

quantity like (3.3) for a quantity in replica space. Besides, replica results seemed 

to be marred by pathologies in the zero temperature limit (Sherrington, Kirkpatrick 

[17] , Aharony[18]). This was enough to motivate a search to work directly with (3.3). 

Among others, Grinstein, Ma and Mazenko [19] have indeed used perturbation expansion 

of time-dependent Landau-Ginzburg models to study dilute random systems, Ma and 

Rudnick [20] to study, through resummations, the phase below the freezing-in tempera- 

ture T . We use here a Lagrangian systematic expansion [21], which is basically an 
g 

extension of the Martin, Siggia and approach adapted to random systems [23]. Rose [22] 

This allows us to discuss general properties of the ordered phase and reveals that 

frozen-in Landau Ginzburg systems are unstable, unless constrained in a proper way. 

The beauty of working with dynamics is, not only that it keeps closer to phy- 

sics but it makes unnecessary any trick to get across the log of (3.1). Basically 

the reason why one can get rid of replicas by looking from a dynamic point of view 

is that propagators rg%/Tytded in ~me give a vanishing contribution for closed loops, 

just like replicas give a vanishing weight (n=0) for closed loops. In fact it could 

work with any dynamic equations provided one insures that at t =~ the starting (sta- 

tic) system is recovered. 

Consider first a Landau-Ginzburg Hamiltonian~{~} and a Langevin equation that 

describes the relaxation towards equilibrium [24] 

~(xt) ~{~} 
~t -Fo ~(x,t) + ~(xt) (3.5) 

F is a bare kinetic coefficient, ~(xt) a dynamic random noise, i.e. governed by a 
o 

probability law. To simplify we take again a white noise law 

<~(xt)> = 0 (3.6) 

<~(xt) ~(x't')> = C 6(x-x') 6(t-t') (3.7) 

which is justified if the noise takes care of the rapidly varying degrees of freedom. 

If we choose C = 2F , then we are insured (via a Fokker-Planck description) that the 
o 
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t = ~ limit is governed by the density matrix exp-~that describes equilibrium 

(statics). From (3.4) one derives the generating functional [25] 

= f ~kO exp {fddx dt J~(xt)~0(xt)} x~t 6(~ + ~-~0 ?o ) J (3.8) 

= f ~0 ~$ exp {fddx dt (i~ [Fo--~t + 6~6k0 F-~o'] + %~0)} J (3.9) 

where the source %(xt) couples to the field ~ and the magnetic field to iS • The 

Jacobian J insures that the ~ functions are properly normalized, that is 2~(%=0) = I. 

As a result Z~(~) is d i rec t ly  an observable. By averaging over the dynamic noise one 
has 

Z(~) = f ~ ~ exp{fddx at ~(xt)~(xt)+ £(~,~)} J (3.10) 

£{~,$} = I ddx dt [i~ (F~ 1 ~ 6~I+ F -I "^ "^ ] ~-t + ~l o l~ l~ (3.11) 

where Z generates the Martin-Siggia-Rose perturbation expansion with bare propaga- 

tors 
-I 

[ i~ ] (3.12) <i~>o ~ Ro(k,~) = - ~O + ro + k2 

<~ ~>o ~ C ( k , m )  = 2F~I  _ im k 2  - 2  o ~o + ro + (3.13) 

respectively linear response, and correlation function. Closed loops built with the 

(retarded) linear response, identically vanish. The generating functional for res- 

ponses and correlations (3.10,11) may now be used for systems with random impurities, 

since we do not have yet specified what ~ is. 

4. RANDOM LANDAU-GINZBURG SYSTEMS [23] 

i) Random magnetic f ie ld  : 

If we add to ~ the random magnetic term (2.5) 

fddx   x)  x) 
then~ in(3.10) becomes Z+~ R with 

£R = f ddx hR(X) [fdt i$(xt)] (4.1) 

where hR(X) remains time independent, because the random degrees of freedom~ are 

quenched. Again we are allowed to average Z(%) over the probability law ~(hR) , 

which, for the Gaussian characterized by (2.6,7), replaces (4.1) by 

~eff = Ah f ddx [ fdt i$(xt)] 2 (4.2) 



261 

It is instructive to look at the system with no coupling (u ° =0). In £+£ef f 

one has a local source (F~ |) and a completely delocalized (Ah) source. The response 

(3.|2) is unchanged but the correlation has two terms corresponding to the two 

sources 

<~ ~>o = 

that is in Fourier transform 

2F-| f~h 6 (00) 
o 

r ° o + ro 
(4.3) 

} Ah 
<~(t) ~(t') > ! exp It-t'l [ro+k2 ] + (4.4) 

o ro+k2 fro+k212 

displaying a decaying t~ and a £J~e p~6i6te~ term. This last feature is preser- 

ved when the coupling is turned on, and the correlation function keeps a time persis- 

tent part (proportional to ~(~) ). 

i i )  Random temperature : 

Now we have (2.1]) for the random part 

= ~0 2 ~R I ddx VR(X)(x) 

and then for the Lagrangian 

2R = I ddx VR(X) [ fdt i~(xt) ~0(xt)] (4.5) 

Averaging with cumulants (2.]2,|3) we obtain 

2 e f f  = Av I ddx [ ; a t  i@(xt) tp(xt ) (4.6) 

again completely delocal ized in time. The Lagrangian ~,~+ £ e f f  governs the Landau- 

Ginzburg system with random temperature. I t  is  handily used with renormalizat ion 

theory to study c r i t i c a l  behavior of d i lu te  systems in 4-~ dimensions, e .g .  to com- 

pute the phase diagram of Fig. I. Of greater interest is to establish the equation of 

state for the presumed (averaged) order parameter Q, below T 
g 

Equ~on of state • The equation of state is obtained by writing the Dyson 
equation for the matrix propagator 

(4.7) 
R* 

where the components are the correlation and response and C °^ i$> a = <l~0 vanishing 

correlation in the absence of sources for the field ~0 . Namely one has 

6 ~{~} (4.8) 

with 
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o 1 
Go 1 = (G *)-]  Ah~(~°:~'2ro ] /  (4.9) 

and~(~{G} the l - i r r e d u c i b l e  f u n c t i o n a l  (no s e l f  energy  i n s e r t i o n s )  e x p r e s s e d  in  

terms of the  f u l l  p ropaga to r  ( ( ~ ) .  Taking the  C component of (4 .8)  we get  

4G 
= 2to I + Ah 6(~) ~tC,R,R ,C} , (4. lO) C(k~) 

I R(k~) 1 2 6~ ~=0 

a corresponding equation exists for R, related to (4.]0) by fluctuation-dissipation. 

In (4.10) the last term is the mass operator associated with the correlation function 

dr" 
g ~ m  -):^ ^ = -~ % --~ ~ . . . .  (4 .11/  

where p l a i n  l i n e s  stand f o r  C, mixed l i n e s  f o r  R . The l o c a l  v e r t e x  u i ~ ( t )  ~03(t1 
o 

and the delocalized vertex f~v(i$(t) ~0(t))(i$(t') ~0(t')) have obvious graphic repre- 

sentations. The A interaction preserves frequency along the solid lines (complete 
v 

deloealization), this is why (4.;1) can sustain a persistent component for C(k,~0). 

If we write 

C(k,~o) = ~(k,~o) + Q(k) ~(~o) (4.12) 

separating a decaying and a persistent part, we now have the option that below T g 
(4.11) splits into £WO equation, a function component for ~(k,~), and a distribu- 

tion component for Q(k) 6(~) the latter being the equ~on of s£~dJe. N~mely we have 

Ah Q(k) + ZJ {Q,~,R} (4.]3) 
R(k) 2 US 

(4.14) , + ; %  + + 

where now we keep plan ~ines for ~ and use crossed lines for Q . The operator ~d is 

the same as the one defined by Ma-Rudnick if one keeps all l-irreducible graphs that 

fall apart into two pieces by cutting all A v (dotted) lines and all Q (crossed) lines. 

Eqs.(4.13,14) express the field A h in terms of the (observable) conjugate variable Q 

which appears explicitly and also via R and ~ . If £h #0 , there always is a non-zero 

Q solution to (4.13,14). In zero field, A h = 0 , a non-zero solution may exist below 

T defined by the existence of a zero eigenvalue for the matrix 
g 

~£h(k) 
(4.]5) ~Q(~) 
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To lowest order we get the well known equation 

] = Av I ddk 
(rog + k2) 2 

for the freezing temperature T 
g 

- A s y m p t o t i c  t i m e  dependence  : The companion 

(4.16) 

equation generated by (4.]0) yields 

r - C(k,~) + Z~^ 

o [R(k,~)]2 ~ 
( 4 . ] 7 )  

I 

c -E + : Jr _ E^^ = Ed = 

determining ~(k,c0), the decaying part, also related by fluctuation-dissipation to 

R(k,c0). Suppose that one removes all the A (dotted) lines from (4.18), the external 
v 

vertices at t and t' remain connected by at least one ~ (and possibly some Q's). In 

the u 2 term, e.g. there may exist two or three such ~'s . Ma and Rudnick have shown 
o 

that if one keeps consistently only terms where Ec ^ is prevented from being persis- 
k0k0 

tent by one single ~ connection, then ~(c0) N~0 I/2 for small frequencies, i.e. 

~(t-t')--(t-t')-]/2 . In this approximation u 2 terms should be absent and indeed, 
o 

near T they do not contribute to (4.14). However below T one may expect that Q 
g 2 g 

increases to the extent that u terms will become significant in (4.14), these terms 
O 

are ~0~ug and will tend to destabilize the ordered state after a time of the 

order ~ [Tf/(T-Tf)]4 . Notice that the destabilizing Q3 terms of the equation of 

state correspond to Q4 terms in the free energy (or in a Hamiltonian ~{Q} ).However 

there is no free energy functiona~5'~ C,R,C that would generate (4.17), or its C and 

R components, by stationary variations of ~ (or C and R, see further). 

2~i)  Role  of  p r o b a b i t i t y  t a i l s  : 

It is instructive to look at the very small repulsion limit. We only have to 

suppress graphs containing u vertices. The equation for E^ ^ is now linear in C(k,~). 
o ~ 

One may again define a T where one has a zero eigenvalue for (4.]5) and where fluc- 
g 

tuations of Q become infinite. However, if one considers the connected part of 

<~(t I) ~(t 2) ~(t 3) ~(t 4) > for all time intervals becoming infinite, it turns out to 

have[ 26] a time persistent part that appears (whose fluctuations become infinite) 

before <~(t;) ~(t 2) > t1_t 2÷~ , as the temperature is lowered i.e. associated with 

a T (2) >T . And so on for higher correlation functions in time. 
g g 
In terms of the localization problem (u m0) this signals that a singularity 

o 

appears at a negative energy E ° < ... <E (2) <E < 0 which in the case of long tail 
g g 

(Gaussian) probability law for V R is rejected at -~. If we take a short tailed law 
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double peaked at ±Ai/21 ~ then E o (the bottom of the band) is at a finite dis- (e.g. 

tance -Av.The quartic termV +ffddx~ A2(x) in o ~  (4.6) 

= I at i~(xt) ~(xt) (4.19) A(x) 

is replaced by 

+ [ ddx Inch A I/2 A(x) (4.20) 
J V 

which for small values of the arguments gives back (4.6). 

In fact both negative cumulants and the repulsive coupling u ° play against the 

appearance of higher time persistent correlations at a temperature T>T (i.e. g 
IEI > IEgl ), but the result of that delicate balance is difficult to foretell (see 

also further via replicas). 

iv) RepgCca approach : We now work with replicas indexed by ~ = 1,2,...,n , we have 

= I ddx ~l $(ro_V2)$ + Uo4, c~ ~ (q)~)4 + h c~ ~ ~0~ - ~#B ~ HC~ ~0~ ~0~ (4.21) 

I 1 -÷ = ddx ~ VR(X ) ~0.~0 (4.22) 

which leads to (Gaussian law for VR) ~ + ~eff with 

~eff A 2 I ddx (15.$) 2 (4.23) 

- Free energy and equation of state : Consider the correlation matrix ~ whose 

components are 

G ~B m Q~8 ~ # 

G = 

In this case the free energy (Legendre transform of 

nary functional * 

(4.24) 

(4.25) 

InZ n) is given by the statio- 

This in contradistinction with the dynamic approach where there is no free 
energy functional whose stationarity equations (upon varying R and C) are Eq.(4.10) 
(and the corresponding equation for R). One way to construct a (non stationary) free 
energy vs C and R is quoted in Ref.[23]. It would be redundant and wrong to use the 
MSR generating functional and replicas as in Tanaka [27]. If one insists upon obtain- 
ing a free energy functional stationary for the dynamic equations of motion the 
following can be done. 

i) Use the Lagrangian approach described in Ref. 28 that generates response func- 
tions. For example R(~%), where ~ is discrete and has to be analytically continued 
in the proper way. This approach only works for purely relaxational systems (no mode 
coupling). 
~) Use replicas as above then get G~B(~ ) = Q 

6~;0 

G (~) = R(~) + Q ~;0 

i~ + r + k 2 R-l(~v) =-P~o o + K(~ v) - L 6v;O 
instead of (4.27-29) and (4.32). Eq.(4.31) is unchanged. The only change in (4.30) 
is that G ~ contains a frequency dependent piece (R). 
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= ~ n=0 
- r' ~ Tr in~-[(~°]-1(~,,7 

and its associated Dyson equation (4.8), with G ° = ~ 6(ro+k2) -I 

solutions with symmetry preserved in replica space, letting 

Q~B = Q(k) 

G ~ = G(k) 

R(k) = G(k) - Q(k) 

+~{~-~} (4.26) 

• If we look for 

(4.27) 

(4.28) 

(4.29) 

we obtain the free energy 

-F= ~ {InR(k)+ Q(k) (ro+k2) G} + ~n~{G,Q} n= 0 
k R---flY - 

(4.30) 

For Dyson equations that give the equa£~on of s£ztte, we have 

Q(k) = R2(k) L(k) (4.31) 

R-l(k) = (ro+k2) + L(k) - K(k) (4.32) 

where 

K - 6G~ 

6Q ~B 
~- -'- + ~ (4.33) 

Here crossed lines again stand for Q and plain lines for GmR+Q . R(k) is the zero 

frequency response function, the equal time (purely decaying) correlation ~(t=t'). 

Although (4.31,33,34) look different from (4.13,14) one easily checks their identity 

to few lowest orders. They probably are identical (though we have no direct proof). 

Note that G is even in Q, R is odd. 

- S£abLgg~y : If we rewrite (4.21,23) as 

= 1 ÷ 2 + 1 (~0 ~)4_~ ~ (q)~ ~)2- ~ ~$) 
~+~eff Iddx{~ ~(roV )~- (3A-no) -4~. ~ 

(4.35) 

where we have a field H ~B coupling to the presumed order parameter, we may now inte- 

grate out the ~ variables and only keep the variables Q~ trivially related to the 

order parameter 
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with 

exp -S{Q ~} 

~{Q~B} = A-| I ddx ~ (Q~)2 + S{Q~B} 
v ~B 

(4.36) 

I ~ I (H~+Q~B)~B | ÷ 2 + 1 (q)~)4} = exp ddx{~ -~ ~(ro-V )~+ (3A-Uo)~-~. [ 

(4.37) 
On this form it is now clear that the system turns unstable in the run-away region 

of the coupling parameters. 

C£~sica£ 10c~zed So~o~ : In the localization problem (u ° = 0) we are pre- 

cisely interested in the lifetime of various correlations or their imaginary part, 

that arise on account of their unstable Hamiltonian. Far in the tail IEI (4-d)/2 >>A 
v 

mean field should be a good approximation, as given by saddle point approximation. 

This has been done by J. Cardy [29] using the techniques developed for instanton cal- 

culations, with the result 

E ~(5-d) {_C E(4-d)/2 
p(E) ~ exp A J (4.38) 

v 

Although the prefactor (coming from fluctuations) looks different from most results 

in the literature, it can be reconciled if one modifies Edwards [30] and Lifschitz [3|] 
[32] 

computations for unaccounted collective modes, and Zittartz-Langer who were the 

first to treat the collective modes, for a trivial approximation. In fact (4.38) 

gives the correct result even for d =0 and d= I . Fluctuations are computed around 

the classical solution, O(n) symmetric, of the equations of motion 

÷ A v ÷ ÷ 
= __ 

(-V2 + IEI) ~cl 2 (~el'~cl) ~cl (4.39) 

The dynamic approach provides another set up to look for classical solutions 

~cl(X,t) that would be easier to handle when there is no more O(n) symmetry, e.g. 

in the presence of 44 repulsion. 

To describe the "ordered" phase (region with extended ~cl solutions) E >E c , 

Imry and Aharony [32'] have proposed, in close analogy to the spin glass, an "order 

parameter" ~+(x) ~B(x)_ where ~ is governed by the random Hamiltonian 

E i io - V 2 + VR(X) . The other operators ~+~+ , ~_~_ are non-critical (they give 

regular contributions to the four-point function or the current correlation), hence 

the effective Hamiltonian is quartic (not cubic as in (4.37)) and d =4 . Recently 
, [33] c 

Abrahams, Anderson, Licciardello and Ramakrisnnan have used instead the energy 

shift under changing boundary conditions (related to the conductivity),for which 

they are able to give renormalization group equations and determine the behavior 

near E 
c 
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5. RANDOM BOND HAMILTONIAN 

If we turn now to the more interesting random bond Hamiltonian, we may use a 

Langevin-Glauber equation instead of (3.5) to describe relaxation to equilibrium. 

The previous dynamic approach follows. However the constraint (~2= I) renders the 

equation non-linear in the random coupling (J~), or conversely if Langevin-Giauber 

we want to keep it linear, we have to use two coupled equations (for the spin field 

and its conjugate variable). Here we follow the literature and use replicas. 

i) Effect ive spin glass Ham%lto~an : 

We use the spin glass Hamiltonian of Edwards and Anderson [16] 

raging over a Gaussian probability law of variance Aj , we have 

~eff = j~ ~#B~ ~(Aj) . kJ (o~) (o~) -~ hjo~- ~ H~ Bj o~o~j J 

with Aj ~ A/T 2 • Tracing out the spin variables we obtain 

~{Q~} j~ Qj Qk + .~ Sj {Qc~B} 
J 

exp-Sj{Q ~} = Tr exp ~ (H~+Qj ~) o.~. ~ 
o ~ ~#B J J 

, i.e. after ave- 

(5.1) 

(5.2) 

(5.3) 

On (5.2,3) we already see that the stability troubles that were plaguing the Landau- 

Ginzburg model for large values of Q~B, do not exist here. 

The usual successive steps to study the transition region in the ordered phase 

(mean field, fluctuations, renormalization group) must now be taken on (5.2,3), where 

one has forced in the presumed order parameter 

limit < O~ ~B > n=0 J J ~#B = ~jk 
(5.4) q 

and q is trivially proportional to the average value of Q 

i i )  Mean f ie ld  : 

Edwards and Anderson derive from (5.2,3) an exact mean field equation when all 

averaged Q~ are taken identical (no symmetry breaking in replica space). One gets 

(Q = qAj , Aj-=A/T2), 

F Aj (--0" -1) + dx e-X2/2 Q1/2 
- g - r  = -~- Aj ~ -2/~ In  2eh x ( 5 . 5 )  

and for the free energy per site and through stationarity, 

i +co -x2/2 QI/2 
_Q_ = dx e th 2 x (5.6) 
Aj -~ 2~ 
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which nicely gives a second order transition for Q with T = A |/2 and a linear beha- 
g 

vior in Tg-T /Tg near Tg . It also gives a cusp in the susceptibility X (X is linear 

in Q). Unfortunately the specific heat also has a cusp. Mean field is believed to 

become exact in the limit of an infinite number of interacting neighbours. The 

model of Sherrington-Kirkpatrick [17] has that feature and was solved exactly giving 

the same result as the mean field result of Anderson-Edwards. It also showed a nega- 

tive entropy at T = 0 due to inversion of the order of limits (n = 0 and thermodynamic 

limit). This led Thouless, Anderson and Palmer [34] to derive the mean field result 

without replicas, showing that below T , the above solution is on the "wrong branch" 
g 3 

On the "correct" branch the free energy is at a saddle point F N(Q-Qo ) . This 

saddle structure is conjectured to persist at all T<T . It also has a vanishing 
g 

entropy at T = 0 . The TAP technique which involves resurmning infinite subseries of 

diagrams, is difficult to use in a systematic way. Blandin [7 ,35] has derived an 

equivalent result near Tg , to Q3 order, using replicas and breaking the symmetry in 

a "physical way". Defining 

Q = <aS> = lim ~ InTr exp- {0} + {S + ~ H.•.S (5 7) 
H.÷0 3 j 3 3 J ' 
3 

where ~{o} and ~{S} may be thought as two identical systerm (or the same system at 

a long time difference). To compute the log , replicas are used for each system 

(n= 2m) and mean field is sought with variables (~= 1,2,...m) 

Q = <o ~ s~> 

P = <S a S ~> = <o ~ ~> ~ # B 

R = <S ~ oB> ~ # 

(5.8) 

Since the field H couples to o~S ~, Q is preferentially aligned and Q~P,R . 

The free energy for the "physical" order parameter Q is obtained by eliminating 

P,R (as functions of Q defined by their mean field value) 

SF ~F 
0 

~P ~R 

and substituting in F{Q,P,R} . The result is surprising because it gives the saddle 

point behavior of TAP for T < T with little cost. Blandin symmetry breaking when 
g 

carried out to all orders gives (P=R) 

NT 4 ÷ e-x2/2 In 2ch2xR1/2+2e-2(Q-R) (5.9) 

instead of (5.6) and the stationarity equations (for variation of R, Q) instead of 

(5.5). According to Parisi [36] the entropy resulting from (5.9) although better than 

the one from (5.6) is still negative. 
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i" \ x \ 

Q 

Fig.3 - Blandin free energy surface as function of Q,R. The TAP curve is M,N . 

i i i )  F l u c t u a t i o n s  : 

They are used to test the stability of mean field solutions. From (5.2,3) one 

obtains in the continuum limit (and after rescaling) 

, P 
with r = z 2 (~ - 1 

O / 
3 (5.1o) 

W = z 

z is the coordination number. 

The loop expansion rules tell us to write 

Q~B = <Q~B> + q~B (5.11) 

where <Q~B> = Q as given by mean field, then to keep terms quadratic in q~ . The 

spectrum studied by Bray and Moore [37'39] and Pytte and Rudnick [38] is threefold 

(there are three types of propagators Ga = <q~Bq~B> , Gb = <q~Bq~y> , Gc = <q~Bqy~>) 

two are massive and degenerate in the n=0 limit (mass ~ ]ro[) one is massless and 
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corresponds to the combination [38] 

G a - 2G b + Ge = ( <~'~'>i j - <~'>i <~'>j )2 -= XR(k) (5.12) 

called the replicon mode . The above combination is easily shown to be the suscepti- 

bility with respect to the external coupling H (it is most obvious on Blandin's defi- 

nition (5.7)).A simple but unfortunately, we believe, wrong argument of Bray and 

Moore [40] shows that XR is always infinite in the ordered phase when H = 0 in analogy 

with the transverse mode of ferromagnets. Such a property,in agreement with the fact 

that (5.12) has a massless mode, would be of course welcome. 

Trouble seems to creep in when (5.9) is pushed to higher orders [38'39] 

with 

f ddx {-8 ~ Q~Q~YQ%~Q~(~ 

3y 
U = X = -- 

2 

+ 4 [ (QC~fB)2 (QCZ~)2- y ~ (QO~f3)4 + . . .}  (5.13) 

4 
z , (5.14) 

where the destabilizing (Q~)4 terms are the attractive Q3 terms of the equation of 

state (4.14). Indeed they destabilize since the spectrum found for the replicon by 

Pytte and Rudnick is now k 2- 2yQ 2 (instead of the massless k2). We may assume 

from global stability arguments that the destabilizing terms should not be 

effective (unlike in Landau Ginzburg systems with long-tailed probability). At most 

one could expect a first order transition to appear due to the presence of attrac- 

tive Q powers that dominate for Q large but not too large ( in the large Q limit 

the potential is at most linear). The problem (can we deal with~(Q) stopped after 

Q4) has been taken seriously by Bray and Moore [37'39]. They propose a symmetry brea- 

king that seems to provide a desired answer (restoring the massless mode to lowest 

order) but which we believe incorrect (the degeneracy weight of their saddle point 

vanishes with n). 

iv )  Renormalizat iongroup : 

The behavior of the cubic Hamiltonian (5.9) has for critical dimension d = 6 
c 

and in the critical region higher order terms (5.13) are irrelevant. Critical expo- 

nents have been derived by Harris, Lubensky, Chen and Chen, Lubensk~ 41] . They give a 

specific heat 

C = at - bt -~ (5.15) 
v 

= - (1 +2(6-d) + ...) (5.16) 

that sho~sno cusp and looks linear as one would hope for. How much is to be believed 

near d=3 is another matter. Besides, the cusp also disappears from the magnetic 
susceptibility. 

* In dynamic terms the replicon XR is <i ~> <i $~> , that is also the susceptibi- 
lity 6Q/~A h in zero field Ah=O (just like <i$~> is 6<~> /~h ). 
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v) Further  order p~am~t#J~s : 

We have seen in § 4~) that whether <q)~> or <~p~Y~> shows up first as a 

spontaneously non-vanishing order parameter is a delicate balance between random 

attraction and 4 repulsion. Similarly here it would be interesting to explore the 

stability of <o~G6> against <d~o6oYo6> . If one assumes that ~(Jjk ) contains also 

a non vanishing second cumulant, one is in fact pushed into using both fields to 

discuss the appearance of a T . We point out this as a possibly interesting exercise 
g 

to the reader. 

Having dealt with mean field, fluctuations and renormalization group, it would 

have been appropriate to describe how one relaxes towards equilibrium. However,the 

long-time behavior evidence from Monte Carlo computations is too controversial [8] to 

lend itself to a brief summary. We only mention, because we have dealt at length 

with the SK model, that Kirkpatrick and Sherrington [42] have solved its kinetic 

equations at and above T . The decaying part ~(t) of the spin correlation goes like 
-I/2 g 

t ~hich is an exact result of Ma and Rudnick for the Landau-Ginzburg mode~. Below 

T Monte Carlo computations show that it is well approximated by the same power law. 
g 

This slow relaxation arises however from a continuous spectrum of relaxation rates 

extending down to zero. 

6. LOW TEMPERATURE APPROACH AND FRUSTRATION 

Given the confusion that exists on the behavior of the presumed ordered phase 

near T , people have tried to understand the ground state and low lying excited 
g 

states properties. Foremost in this context is the concept of frustration as pointed 

to by Anderson and developed by Toulouse [43], who in particular emphasized the role 

played by gauge invariance. 

Consider first the ideal spinglass system in dimension d= 2 , J~. mJg.. 
1j  13 

= - J ~ Ej% Oj ~% (6.1) 
j~ 

where the spins O (matter field) and the nearest neighbor bonds ~ (gauge field) take 

values ±| . The simplest gauge invariant quantity is the frustration on a plaquette 

e(ijk%) 

~e = ~ij ~jk gk~ g%i (6.2) 

If ~p = +I the plaquette is not frustrated (all bonds may be satisfied), if ~p = -1 

the plaquette cannot have all bonds satisfied, it is frustrated. 

In the dual system (which we know to be appropriate for low T) one has spins ~p 

on plaquettes (dual sites) and nearest interaction between plaquettes. For a specimen 

system characterized by a set of frustrated plaquettes {f} , Fradkin, Huberman 
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and Shenker [44] have shown that 

Tr exp {J ~ ej~ oj ~ ~ Tr exp ~J" ~ ~p ~p~ ~ pf (6.3) 
O j ~ ~ pp' {f } 

Here J~ is the dual coupling. It vanishes as T+0 , being related to J~AI/2/T by 

-2j ~ 
e = th J (6.4) 

We take the quenched average over a gauge invariant probability law that weights 

frustration to keep track of it 

{g} ~ H 6(e k' 1) H exp{ -~ ~p} 
(jk) P 

We then obtain ~ [45], for the shift in free energy due to bond randomness 

(6.5) 

In z(jR) _inZ(j) = ~| [y2 ~ In + y4 ] 
a,b <PaPb> abcd~ in <PaPbPc~d > + . . . (6.6) 

4 N 1 = I + y2 ~ + y ~ + ... + y = ~ ((I+y)N+(I-y) N) (6.7) 
a,b abcd 

3f-~* x 
H e r e  a v e r a g e s  a r e  c o m p u t e d  w i t h  t h e  d u a l  H a m i l t o n i a n  , a s  i n  ( 6 . 3 ) ,  a n d  y = e . 

F o r  y = 0  ( n o  f r u s t r a t i o n )  we r e c o v e r  t h e  n o n - r a n d o m  r e s u l t ,  f o r  y = ~  t h e  f u l l y  f r u s -  

t r a t e d  s y s t e m  a n d  f o r  y =  1 t h e  i d e a l  s p i n  g l a s s :  

i) F ~ y  fr~t~ated systems : 

In attempt to discriminate between frustration and disorder, Villain [46], 

Alexander and Pincus [47] , Derrida, Pomeau, Toulouse, Vannimenus [48] have extensively 

studied fully frustrated systems. Results are rich. They raise the possibility [47] 

of a fully frustrated phase separate from the spin glass phase (near the upper criti- 

cal dimension). Of particular interest is the degeneracy D o of the ground state. 

For Ising systems with d = 2 , the entropy is extensive, In D N N. Fo~ example 
o 

in (6.6) the fully frustrated term gives a free energy ~In<Pa Pb "'" ~N > which has 

the degeneracy of distributing N/2 dimers on the lattice (for the square lattice 

it has been given by Kasteleyn [49] as exp ~ N where G is Catalan's constant). The 

transition temperature is T=0 . 

For higher but even dimensionality the D is finite. For odd dimensionality the o 
entropy is not extensive but behavesas [47] N I/d in f.c.c, systems (but N 2/3 in s.c. 

systems[48]), with presumably order in (d-l) dimensions. A Monte Carlo computation 

by Phani, Lebowitz, Kalos and Tsai [50] shows that the f.c.c, system goes disordered 

via a first order transition. What happens very close to T=0 is not yet clear. 

Directly or via replicas which shows clearly that, properly handled, replicas 
may be used at or near T=0 with no frustration suppression (see Ref.[18]). 
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i i )  Ideal spin 91ass : 
It is instructive to look at the other end, where only few frustrations are 

present. 

a} Fr~£E~on p~ : In a specimen system there is a string of flipped bonds 

between frustrated squares. The string varies from specimen to specimen (Fig.4a,b). 

For a single frustration the string goes to infinity (Fig.4c). Along a string it is 

energetically favorable to create a Bloch wall (a closed string encloses a domain of 

flipped spins). 

.... --I ..... 

Fig.4 - a , b : Two strings of flipped bonds in two specimen systems with identical 
frustration configuration. 

c : Single frustration square with infinite string. 

Whatever the string of flipped bonds that connects the only pair of frustrated 

squares, the contribution to F/T is the same and proportional to In<~oDr > • In the 

low T limit (J*÷O) we have 

I n  <~o lJr  > - -  in {(j*)IxI+IY[ D E1 +o(J*)]} (6.8) 

- 2 (Ixl + [yl)J + In D + O(J*) (6.9) 

where r = (x,y) , Ixl + IYl is the length of the shortest path on the dual lattice 

between 0 and r , D is the degeneracy of the path 

D = (Ix] + [y] ) !  (6.10) 
Ix l '  [Y]! 

longer paths are of order J* (compared to J). This is Toulouse's[51]rule of minimal 

strings between frustrated pairs for the ground state. 

When going from specimen systems to (quenched) averages over'J(~) , one has to 
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sum over sites (0,r) and normalize by "~o~6= 2N, l . This last factor dwarfs contribu- 

tions to the entropy or internal energy that come out from (6.9) to let only survive 
[ 45] 

configurations in a region near N/2 frustrated squares 

b} Frus~0n muf~pl~ : With more than one pair of frustrated squares one 

may have contributions to the entropy that involve correlating any number of them. 

For example with four sites forming a square with the lattice along its diagonals 

in {(J*)R 2D2 [l +O(J*)]} (6.11) 
In<~rl ~r 2 ~r 3 ~r 4> 

with the total path length 

R = IXl-X2] + ]yl-Y21 + ]x3-x41 + ly3-Y41 = ]Xl-X4] + lyl-y41 + Ix3-x21 + ly3-Y2[ 

and D = (IXl-X2[ + lyl-Y21)! / IXl-X21! ]yl-y21! 

The extra factor of two comes from the two possibilities of joining summits in pairs 

by minimal paths (of total length R). 

At the other extreme, when all squares are frustrated, the individual degene- 

racy of paths between pairs of frustrated squares is D= 1 , but the degeneracy ~ 

of reorganizing connections (redistributing dimers) may involve anything from two 

pairs of frustrated squares to all N of them. 

c) Zero energy  contou~ts and p i c t u r e  : 

In its simplest form a zero energy contour appear~ (Fig.5a) with four frus- 

trated squares forming themselves a square, (D = 1 , ~ = 2) . In any specimen the 

spin at the central site is then allowed to flip freely without changing the ground 

state energy (two ferro and two antiferro bonds whatever way we connect the squares 

in pairs) restituting a In~ contribution to S. 

II " , 7 

× x :k 

a 

Fig. 5 - a) Freely 

b) Freely 

) 

b 
flipping spin inside elementary zero energy contour. 

flipping blob of ten spins inside zero energy contour 
made of six strings. 
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More generally if we have a contour (Fig.5b) where half of the perimeter is 

made of (p) pieces of (minimal) strings connecting (p) pairs of frustrated squares 

we have a zero energy contour. Imagine all spins aligned outside, spins along the 

border contour are half frustrated and half aligned whether they (and all other 

spins inside the contour) are all up and down. The freedom of the blobs of spins, 

inside zero energy contours, to fllp without affecting the ground state energy, is 

what builds the zero temperature entropy. For evaluation of the entropy it remains 

easier to count the freedom to connect frustrated pairs by minimal strings than try 

to determine zero energy contours and spin freedom. 

The picture emerging at zero temperature is a sea of blobs with convoluted 

boundaries, some uncorrelated and flipping freely, others correlated together to flip, 

d) E x t e n s i o n  t o  d i m e n s i o n  d = 3. WJ~son l o o p s  : 

The corresponding results for d=3 are then obtained [51'44] if one remarks that 

71 in d =2 the spin ~j is replaced by the spin Hp on a plaquette or by relabelling, 

D~ (dual space site) 

in d=3 the spin Dp on a plaquette is relabelled H~ (dual llnk) 

21 in d =2 the n.n. spin ~ interaction (link) becomes a n.n. plaquette interaction 

or by relabelling a n.n. H interaction (link ; self dual) 

in d=3 the ~pHp, link interaction becomes a ~ H ~ H ~ H ~  plaquette inter- 

action (plaquette ; dual of link) 

~* = - J~ ~ ~ H ~ ~ (6.|2) 

P 

The frustration expansion (6.6,7) remains identical provided averages over frustrated 

H's are taken with the weight exp-~* . These averages are only non vanishing if, 

in dual space, one can pave the product ~ ~ with plaquettes (6.12). This implies 
~f} f 

that ~ form one or several closed loop [43,44,51]. 
{f} 

Again let us look at weak concentration of frustrations, i.e. a single Wilson 

loop [52], in a specimen system. Its contribution to F/T is proportional to 

In < ~ H~> (6.13) 
loop J* 

which is known [51-54] to undergo a change in behavior at T . It asymptotically behaves 

like the minimal area spanned by the Wilson loop (low T) or like its edge or peri- 

meter (high T). This is of identical nature to the behavior we had in dimension d=2. 

~ term corresponding to (6.13) was behaving like the minimal length The In <H~ Hk>j. 

of the llne spanning J, k at low T or llke its edge (length independent) at high T. 

In the zero temperature limit, one has to cover all the loops present in each 

term of the frustration expansion, with surfaces of minimum area which is again the 
T [43] [55] oulouse -Kirkpatrick rule. 
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7. DEFECT ENERGY 

In pure systems topological defects may occur as thermal excitations or as 

induced by boundary conditions. They have been classified by Toulouse and Kleman [56] . 

The higher the temperature the easier they are created and the defect energy vanishes 

as T is reached [57]. 
C 

In frustrated systems we are given beforehand a network of frustrated pla- 

quettes (and their associated minimal strings or surfaces at T = 0) which act as 

external sources for defects. When we set spins in such a system, they try to minimize 

the free energy using their natural defects to adapt to the external conditions. This 

approach is taken by Toulouse[58jr, to extend his classification (and propose a macros- 

copic order parameter for cases with n> 2 which we do not consider here). Because the 

frustration network is a source (or a sink) of Bloch walls, we have zero energy con- 

tours. Several authors L59-61Jr~ have computed, on specimen systems2the defect energy 

AF = F A - Fo (7.1) 

which is the change in free energy induced by reversing half of the boundary spins 

in the ground state (free energy Fo) and letting the system relax. Since the ground 

state is here highly degenerate a most probable ground state is chosen for reference. 

This defect energy (per unit length, surface) is found to vanish in dimension d = 2 

(but not in d =3) as soon as the concentration x of antiferromagnetic bonds exceeds 

a critical value xf~.1 , in particular in the ideal spin glass limit x = I/2 . 

From there Toulouse, Vannimenus and Maillard [62] have suggested that, as the 

temperature is raised, a transition from spin glass to paramagnetic phase may occur 

when the zero energy contours become so convoluted that it is impossible to tell 

from which ground state therlSystem originated. The transition would occur at T R , 

the roughening transition L63j temperature, when the width of the boundary of the 

zero-energy contour reaches the order of the correlation length. In d = 2 , one has 

T R=0 ; but in dimension d =3, one has T R>0 , leaving room to take care of the 

transition spin glass to paramagnet. 

Derrida, Maillard, Vannimenus and Kirkpatrick [64] have given an interesting 

argument however, to warn not to take a zero defect energy at T = 0 as necessarily 

implying that T = 0. Indeed,one has for the defect energy 
g 

- + T(So-S A) (7.2) AF U A U ° 

If UA-U ° vanishes with T , and if the creation of a defect IO~6 the entropy in a 

non-vanishing proportion (which they construct examples of), the entropy term in 

(7.2) may take over. In that case one has a AF rising with T, near T = 0 , to vanish 

eventually at a higher temperature, T 
g 
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8. ORDER PARAMETERS. CONCLUSION 

We now summarize the situation for the order parameter. 

In the Landau-Ginzburg case, we have seen the appearance of a gellation or 

freeze-in transition, with <~> or <~(t) ~(t')>t_t, ÷~ the order parameter supposed 

to describe the ordered phase. In all cases the system appears blatantly unstable 

unless the randomness is governed by short tailed probability laws where the instabi- 

lity may become limited to a small region. This is no problem for the pure random 

potential system where we precisely try to compute instability characteristics 

(e.g. Im G = o(E) ). In the coupled Landau-Ginzburg Hamiltonian (random temperature), 

we have to live with that instability and after some short time in the frozen-in 

phase, we do not know where it would drive us (large cluster paramagnetism ?). 

In the more interesting random bond Hamiltonian the corresponding (local) order 

parameters <o~ ~> appears to describe the freeze-in. With the same questions aris- 
JJ 

ing : instability but limited perhaps to intermediate values (~{Q~}~n is positive 

for large values of Q~), uncertainty about the role of order parameters involving 

more operators. 

Looking at the spin glass systems from the low-T side, we have seen above no 

clear evidence in favor or against a freeze-in transition in d= 2 or d = 3 . Here 

we have to distinguish between the three models consideredjEA (Edwards-Anderson), 

SK (Sherrington-Kirkpatrick), ISG (Ideal Spin Glass). 

The most thoroughly explored (and the less physically relevant), the SK model 

poses the well defined mathematical problem : how to extend through T = 0 a solution 

known for T > T , and obtain what MC computations reveal, a vanishing entropy at T = 0. 
~ g ~ ~B> 

Dimension is absent in this model. The EA order parameter <o. . seems appropriate 
JJ 

but one does not know what to do (symmetry breaking in replica space, introduction 

of further operators) to make sense at low T. 

The EA and !SG models have been thoroughly explored near T and T=O and MC 
g 

computations do not seem to find much difference between the two models. A conti- 

nuous spectrum of couplings (EA) suppresses exact zero-energy contours by giving 

rise to a continuous range of ~tivation energies. As a result the EA ground state 

has a lower degeneracy (the entropy is in N a, a << I , instead of being extensive 

like for ISG in d=2,3). 

Besides, MC computations are confusing since they seem to give consistently 

an order parameter that decreases on very long time scales, not only for EA or ISG 

but for SK as well [8], where the reality of such an order parameter seems well esta- 

blished. We have seen the ground state as highly degenerate, a complicated assembly 

of spin blobs of various sizes, flipping rigidly with no (or almost no) energy cost, 

even for time scales that become infinite at T=0. In the very words of Kirkpatrick 

and Sherrington [42], one may view the picture in phase space as a large number of 

large valleys paved by small local extrema (flipping of small blobs) and 
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separated by hills(flipping of larger blobs). How this picture may coexist with 

strict time long-range order is not clear to the author. Obviously, it would be 

very valuable to be able to follow the low temperature behavior of <o ~. o B. > or 
J J 

rather <oj(s) Oi(t)>t_>o ° and see what becomes of gellation as one approaches the 

ground state. 

To end up we wish to point out that we have left several very important aspects 

of the subject. In particular we have ignored xy and Heisenberg systems. We have 

not even mentioned the giant cluster approach which may very well be the real cue 

to understanding systems with dilute quenched magnetic impurities. 

Finally, we wish to thank A. Blandin, E. Br~zin, B. Derrida, C. Itzykson, 

G. Parisi, J. Rudnick, G. Sarma, G. Toulouse and H. de Vega for discussions from 

which we benefited. Special thanks go to L. Peliti, in particular, for clearing 

up level density results and G. Parisi and J. Zittartz for private communication 

on their own work. 
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DYNAMICS OF THE ONE-DIMENSIONAL HEISENBERG SPIN SYSTEM 

A. SjSlander 

Institute of Theoretical Physics 

S-412 96 G6teborg, Sweden 

I INTRODUCTION 

Our interest in low dimensional systems can be traced to two different reasons. First- 

ly, they show often rather unusual dynamical behaviour, originating from very strong 

correlation effects. Secondly, our possibility of analysing in detail relevant theo- 

retical models is improved as we go to lower dimensions and this is particularly true 

in one dimension. A material of particular interest in this respect is (CD)3NMnCI 3 

(TMMC) which consists of Mn ++ ions, lined up along chains, and which shows striking 

one-dimensional magnetic properties down to IK I . It is found to correspond quite well 

to an ideal nearest neighbour Heisenberg chain with antiferromagnetic coupling. The 

Mn ++ ions have spin 5/2 and this makes that quantum corrections are reasonably small 

even at low temperatures. 

No long range spin order can exist in this system at any finite temperature, but the 

short range order is found to extend very far. Sharp spin wave resonances appear at 

low temperatures 2, in spite of lack of long range order, and the line width is found 

to increase essentially linearly with temperature 3. This can be understood qualita- 

tively on the basis that we have for small T a strong local ordering of the spins. 

However, a more detailed understanding of the experimental results requires a proper 

analysis of the relevant theoretical model, the Heisenberg model in this case. 

Various static correlation functions areknown exaetly 4'5'6 and the value for the in- 

verse correlation length is K=kBT/IjIS2a , where J is the nearest neighbour exchange 

constant, S the length of each spin, and a the spin lattice constant. It is also a 

fact that the Heisenberg model gives sharp spin wave resonances as T÷05, but earlier 

predictions of the linewidth were contradictory I . 

Here, I will report on calculations by G. Reiter and myself on the dynamics of this 

model. The results on the linewidth and the lineshape are exact to lowest order in 

temperature. The basic results were reported in Physical Review Letters 7 nearly two 

years ago, but the full paper on this has been completed just recently and will be 

published elsewhere. In the intervenient time some new interesting results were ob- 

tained and, in particular, extensive computer simulations by Heller and Blume 8 have 

been completed, both for the ferromagnet and the antiferromagnet. Some comparisons 
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between these results and our asymptotic ones will be presented later on. 

I will here only briefly outline our approach, stressing the most important features 

of the model. We may in certain respects consider T=0 as a critical point, having long 

range order at T=0. The question of proper hydrodynamics, validity of dynamical scal- 

ing etc. are then of particular interest and highly relevant for this conference. The 

static susceptibility shows the ordinary mean field behaviour near T=O 4, but the dy- 

namics carries some surprises. 

II MODEL CALCULATION 

We consider the model Hamiltonian 

I~, j ~ °~ (11.1) H = - ~ q -q q , 

where Sq are the Fourier components of the classical spin vectors S R and, for nearest 

neighbour interaction, J =2Jcos(qa). The quantity we will be interested in is the re- 
q 

laxation function 

Z(q,~) = i dt e i~t <~_q(0)-Sq(t)> (11.2) 

and the corresponding spectral function. Using the Zwanzig 9 and Mori I0 projection op- 

erator technique, we may write Z(q,~) in the form 

~2 

Z(q,~) = i <~_¢ ~q> /[~ - ~ ]  (II.3) 
q 

+ \ 
Here, <S • ~ > as well as ~ and F (t=O) are known exactly from earlier work of Fisher 

-q q 5 q q 6 Lovesey and Meserve , Tomita and Mashiyama . The formal expression for F (t) contains 
q 

the second time derivative of S (t) and we may insert 
q 

"~ (t) = 8j2sin(qa/2)N -I ~ {sin(qa/2) hq,(t) + sinF(q,-q)a/2 ] 
q 

_ ÷ (t) (II.4) xcos[(q'-q)a] eq,(t)} Sq_q, 

The new quantities, appearing here~ represent two kinds of collective modes and they 

are defined as 

eq(t) = ~ cos(q"a) {Sq.+q/2(t)°S_q,,+q/2(t)} 
(II.5) 

hq(t) = ~ cos2(q"a) {Sq,,+q/2(t).S_q,,+q/2(t)} 

The first one is simply the Fourier transform of the local energy density and the sec- 

ond one is the corresponding quantity for the next nearest neighbour. We shall by 6e~t) 

and 6h (t) mean their fluctuation around the corresponding equilibrium values. F (t) 
q q 

becomes for finite q and low temperatures proportional to T, and for the ferromagnet 
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we have asymptotically, as T+0, 

rq(t) = i (8j2/S2Ka) sin2(qa/2) <6h_q(O) 6hq(t)> , (11.6) 

where Ka=kBT/jS2 and <6h_q(0) 8h (0)> is proportional to (Ka) 2. This yields through 
q 

(II.3) sharp resonances in Z(q,~). It is here sufficient to calculate the time evo- 

lution of 6h (t) at absolute zero temperature and this is done by first considering 
q 

the equation of motion for the two-spin variable fq(q',t)=8{~q,+q/2(t).~_q,+q/2(t)}. 

For T=0 it satisfies the equation 

~2 2 ,  ,)~ _ _ 1 + 
[ ~ t 2  + q tq  I J <f  q ( - q ~ , O ) f q ( q ~ , t ) >  ~ [ 6 q i + q / 2 , 0  6 _ q i + q / 2 , 0 ]  

2, . ,  
x q~, ~q<q ~ <f_q(-~,0)fq(q",t)> = 0 , (II.7) 

where 

~q(q12 ,) = (4JS)2 sin2(qa/2) sin2(qla ) , (II.8) 

and ~q,0 is the Kronecker symbol. The initial values can be calculated, using results 
6 

of Tomita and Mashiyama . It is readily checked that 

q • ,  fq(q',t) = 0 , (11.9) 

implying that the fluctuations in the spin length are always kept to zero. This turns 

out to he a very important point in order to recover sharp spin wave resonances at 

' and q2' and these are easily evalu- T=0. The solution for £q(~) contains sums over 
ql 

ated through residue calculus. We obtain 

JI(T) 
£q(t) = i (Ka/2)~4JSsin(qa/2] 2 { "T + J0(T) cos2(qa/2)} (11.10) 

where T=4JSsin(qa/2)t and J0 and J1 are Bessel functions. The memory function has for 

small values of q a very slow decay in time and is furthermore oscillatory. Its 

Fourier transform, defined as for Z(q,~) in (11.2), is 

r q (~ )  = - 2 J S ( K a ) s i n ( q a / 2 ) E ~  - ( ~ 2 - 1 ) 1 / 2  + ( ~ 2 - 1 ) - 1 / 2 c o s 2 ( q a / 2 ) ]  , (11 .11 )  

where ~=~/4JSsin(qa/2). The singular behaviour for ~=I reflects simply a singularity 

in the two-spin density of states, but this has hardly any noticeable effect on the 

spectral function in the ferromagnetic case. The situation is different in this re- 

speet for the antiferromagnet. 

With the present results inserted into (II.3) we obtain for low temperatures a spin 

w&ve resonance at 

~q = 4JS sin2(qa/2l~-(<a/2)] (11.12) 
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and the half width at half maximura is 

A = JS(<a) sin(qa) , (II.13) 
q 

except close to qa=w where 

A = JS(Ka) 3/2 (II.14) 
q 

Our results do not give the expected spin diffusion behavio~r for q<<K and it is found 

that (II.11) ceases to hold for q<~. This is most easily clarified by referring back 

to (II.4). We notice there that the coefficient before hq,(t) becomes proportional to 
2 

q , as q+O, and the fluctuations in the energy density, ~e ,(t) begin to dominate. 
q 

However, this contribution enters first in higher order in the temperature and was 

therefore lost in the asymptotic solution above. An approximate calculation of r (t) 
q 

beyond lowest order yields for q<K a spin diffusion behaviour for Z(q,~) with a sin- 

gular temperature dependence of the diffusion constant 11 , 

D = wJSa2/2 in(I/Ka) , (II.15) 

This contradicts the dynamical scaling hypothesis, which requires that D tends to a 

finite value as <÷0. We also notice that the important modes are shifted from hq(t) 

to eq(t) as q passes from above < to below, causing the violation of dynamical 

scaling. 

The antiferromagnetic case is handled in a similar way but the calculations are more 

lengthy and shall not be discussed here. I only remark that in this case both ~e (t) 
q 

and 6h (t) are important throughout the whole reciprocal space and there is no corre- 
q 

spondence here to what happened above around q=<. Again, we find sharp spin wave re- 

sonances and the line width is linear in T and independent of the wave vector for T÷0. 

Z(q,~) shows diffusive behaviour for small q and the diffusion constant is 

D=21JiSa/~ , (II.16) 

and dynamical scaling seems to hold. However, the scaling hypothesis is violated to 

some extent at the zone boundary and this is caused by the singularity of the two-spin 

density of states. 

III COMPARISONS WITH EXPERIMENTAL AND CO~UTER SIMULATION RESULTS 

Earlier experiments on TMMC by Hutchings and Windsor 3 and by Shirane and Birgenau 12 

have clearly demonstrated a linear temperature dependence of the line width and that 

the borderline for the existence of spin waves is q~<. This is in contradiction to 

some of the earlier model calculations I . Extensive computer simulations have been car- 

ried out in recent years 8'13'14. In our earlier publication 7 we presented one figure 
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of Z(q,t), showing how our asympt~otic results compare with the computations of Windsor 

and Locke-Wheaton 13 for a rather high temperature (Ka=0.3, T=34K for TMMC). We then 

inserted in (11.3) the exact finite temperature values for <~ ~ ~q> and ~q, but our 

asymptotic form for rq(~) was used. The agreement was within the uncertainty of the 

computer data over the rather short time region, for which the simulations were done. 

Since then such calculations over much longer times have been reported by Heller and 

Bltune 8 and some of their most recent results were provided by Professor Heller in pri- 

vate communications. For the ferromagnet they found that the line width varies as 

A 
q 

= (1.0 ± .I) JS(Ka) sin(qa) , qa<w/2 

= (I 2 + .4) JS(Ka) 1"45±'2 . - ~ qa:W 

(III.1) 

They did observe a change of the temperature dependence close to qa=w, and their re- 

sults seem to agree with ours within the computational uncertainty. The figures below 

present comparisons between our asymptotic form for Z(q,t) and the computer simulation 

data at Ka=0.1 and qa=w/2 for both the ferromagnet and the antiferromagnet. Again, the 

exact finite temperature values of <~ . ~ > and ~ are inserted. According to our re-- -q q q 
sults, the curve should for qa=w/2 be identical in the two cases, but it is noticeable 

•V A /~ ~ .~ A 
V V V v v 

FIG. I. Comparison of present result for Z(q,t)/Z(q,0) (full curve) with computer sim- 

data (open circles) at qa=w/2 and Ka=kBT/jS2=0.1 for the ferromagnet. Our asymp- ulation 

totic curve has been folded with an appropriate resolution function (the data were pro- 

vided by P. Heller and G. Reiter). 

from the figures that the "experimental" curve is more strongly damped in the anti- 

ferromagnetic case. The agreement between theory and experiments is excellent for the 

ferromagnet but there are certain discrepancies in the other case. The experimental 

line width shows a significant wavevector dependence in contradiction to our asymptotic 

result, but it seems to become less when decreasing the temperature. It leaves, how- 

ever, open the question concerning the origin of the difference between the ferro- and 

antiferromagnet. 
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FIG.2. Comparison of present result for Z(q,t)/Z(q,0) (full curve) with computer sim- 

ulation data (open circles) of Heller and Blume 8 at qa=~/2 and Ka=kBT/jS2=0.1 for the 

antiferromagnet. The resolution corrections are negligible in this case (the data were 

provided by J. Loveluck and G. Reiter). 

Another interesting point concerns the long wavelength limit for the ferromagnet, where 

we found a logarithmic temperature dependence of the spin diffusion constant. Professor 

Heller has provided preliminary data on this and they are in good agreement with (11.15). 

A last remark concerns the good agreement we obtained at high temperatures. This is 

really not that surprising, for we have to remember that, by inserting the proper val- 

Sq>, Fq(t=0 , ues of <S ~ ~q, and ) we satisfy automatically the frequency moments of 

Z(q,~) up to the fourth one and Z(q,t) is now quite short range in time. 
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EXPERIMENTS ON HYDRODYNAMIC INSTABILITIES AND THE TRANSITION TO TURBULENCE 

by 

P. BERGE 

DPh-G/Dir. CEN Saclay BP n°2 - 91190 Gif-sur-Yvette, France 

FOREWORD 

Many hydrodynamic instabilities fascinated people since a long time and, then, 

have been subjected to many studies. Even if we restrict our subject to the more 

known and, may be, the simplest instabilities i.e. Taylor and Rayleigh-Benard insta- 

bilities, we cannot give any complete picture of this field. We apologize in advance 

for the fact that the few features presented here are necessarily very partial and 

we really cannot account for all the very numerous and beautiful experiments deve- 

lopped in this active subject. We wish to refer the reader to some fundamental works 

and review articles for a broader knowledge of the subjet [1],[2],[3]~[4],[5] 

INTRODUCTION 

In any hydrodynamic instability we are in presence of a competition between 

destabilizing and stabilizing effects. The detailed balance between these two 

opposite effects is dependent on an external stress S applied to the system. When 

the external stress S is higher than a certain threshold Sc, destabilizing effects 

become dominant and the system becomes unstable. 

Let us be more precise and consider the case of the two instabilities consi- 

dered here, the Taylor instability and the Rayleigh-Benard (R.B.) instability. 

The Taylor instability is the problem of the cylindrical Couette fluid flow, 

let us say when the inner cylinder rotates, the outer one being at rest. Let us 

suppose furthermore that the spacing d between the two cylinders is very small 

compared to the radius R and compared to the height L of these cylinders (see 
x 

Fig. la). The two opposite effects in the fluid under experiment are the ce~fugal 

force which tends to produce a radial motion of the fluid and the viscosity ~ which 

tends to prevent this motion. A very natural number measuring the balance between 

these 2 opposite effects is, indeed, the Reynolds number of this experiment 

~Rd 
R - 
e 
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Usually and more rigorously we can use for this purpose the Taylor  number which is, 

in the limit d << R considered above, 

~2d4 
T = 4 - -  
a 2 

The Rayleigh-Benard instability is the problem of a fluid confined between 

two rigid, horizontal, conducting plates, distant of d, when an adverse thermal 

gradient is applied to this fluid. Here also we suppose d << L x , L x being the 

greater horizontal extension of the fluid layer. 

Two kinds of effects compete: the buoyancy forces tend to create motion of the 

fluid, when the viscosity and the thermal diffusivity D T tend to prevent these 

motions from appearing. The correct number measuring this balance is the Raylgigh 

number 

R g ~ AT d 3 

a ~ D T 

where g is the gravity acceleration, ~ the volumic expansion coefficient and AT the 

temperature difference between the two plates, see Fig. lb. 

! I 

I 

<i I 
# 

I ' ' 

I Y 

" - " 1  / , . . . .  i -  - . ,  . . . . . . .  -i~,.~i/-~-~- I / , , ,  ,, ,i ,," ,To 
"V I • I #,,,~,,<~. I I 

I ," +t_JAO~ 
I t ' ' ] - - + x  

- - ~  b_ L~ 

Fig. la - Taylor  i ~ t a b i l i t y  Fig. I b - R a y l ~ g h - B e n ~ d  i ~ t a b i l i t y  
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Following the terminology used above,the external stress S applied to these 

two systems is respectively the angular speed ~ and the temperature difference AT, 

more precisely the Taylor number T a and Rayleigh number R a . Let us emphasize that 

all the following results and proposed mechanisms refer always to absolu~_~y co~- 

ta~ external stress S.(Results obtained under time dependent stress are always 

much more complicated and,except for some very definite case, [6] rather confusing 

and not understood.) 

For, the expression "by increasing the stress" may be understood as "by a very 

very slow increase of the stress S and after having allowed the system to reach 

its new equilibrium state". 

This being stated, one can say that "by increasing the stress S" (from zero) 

the two systems described above become unstable at a perfectly defined value S c of 

this external stress. This means that radial (and vertical) velocities set in, in the 

Taylor instability and vertical (and horizontal) velocities set in, in the Rayleigh- 

B~nard instability. The existence of these T and R critical thresholds for these 
ac ac 

instabilities have been, since a long time, experimentally recognized [7],[8],[9] 

and theoretically understood following a "linear theory" [lO],[ll] . A striking s 

but not fundamental, thing is that the adimensional number measuring these critical 

thresholds are almost the same 

T -~ 1724 ; R = 1707 
ae ac 

More striking -and more fundamental- is the fact that both systems exhibit -at the 

critical onset of their instability- a remarkable spatial order i.e. a symmetry 

breaking of the fluid" " " In both cases propertles, convection sets in under the 

form of perfectly periodic "rolls". Let us call A the fundamental wavelength of 
x 

the convective structure (see Fig.la and ib, A is the periodicity of the structure 
x 

along x). 

Another remarkable similarity between Taylor and Rayleigh-Benard (R.B.) insta- 

bilities is the magnitude of this fundamental wavelength A . In both cases it is 
x 

very close to twice the distance d 

A X = 2d 

More precisely, it is natural to characterize these periodic structures appea- 

ring in the fluid by an adimensionalized wave number 

27 
k - d 
x A 

x 

k = 3,127. 
xc 

R 
Value found in Ref.[]|] for R---~ = 0,975 the corresponding k being 

xe 
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Fig.2 - Schematic r e p r ~ e n t a t i o n  of convect ive s t r u c t ~  

Careful experiments show, and linear theory confirms, that 

k Taylor = 3 127 ; k R.B. = 3,1 
xc ' xc 17 

Up to now, and as far as the non-linearities of these instabilities are ignored, we 

are in presence of two very similar phenomena. 

IS AN INSTABILITY ANALOGOUS TO A CRITICAL PHENOMENON ? 

The presence of a critical onset together with a symmetry breaking phenomenon 

have since some years incited physicists to make analogies with a critical pheno- 

menon. 

Let us remind that the classical Curie point is characterized by the appearance, 

below a certain critical temperature T , of a spontaneous magnetization m. This 
c 

transition, indeed, corresponds to a lowering of the symmetry of the ferromagnet 

for T < T c see Fig.3a. 

It is very tempting to make an analogy with the behaviour of the convective velo- 

city see Fig.3b. A natural and powerful approach is, in both cases, that of 

Landau [12] 
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V 
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Fig .  3a - F ~ o m a g n ~  F ig .  3b - I ~ t a b i ~ i t y  

Landau introduced the concept of an order parameter q which measures the degree 

of order of the system. In a ferromagnet q m m ; q m 0 for T > T and q # 0 for 
c 

T<T 
c 

Naturally, in the hydrodynamic instabilities considered here,the proper "order 

parameter" can be the convective velocity V 

V ~ 0 for S < S 
c 

V @ 0 for S > S 
c 

A much more difficult thing is to define a potential ~ . Let us call this 

potential, "pseudo-potential" ~ . See Graham in Ref.[5] and in Solvay Conference 1978. 

Classically this "pseudo-potential" isexpanded in a power serie of the order 

parameter q ~ V ; hence 

= AV + BV 2 + CV 3 + DV 4 + ... (0) 

For obvious symmetry reasons (see Fig. 3b, the V = f(S) curve represents a so called 

"normal bifurcation") 

= BV 2 + DV 4 (|) 

If we remember that d--!~ # d V 
dV dt 
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we obtain from (1) 

dV 
d--t = B'V + D'V 3 , (2) 

w h e r e  B'  ( S - S c )  dV - in order to account for the fact that ~ < 0 in the stable state 
T 
o 

(S - S c < 0 )  dV dV 
, d--{ = 0 when S = S c (marginal stability) and ~-~ > 0 for S-Sc > 0 (see 

F i g . 4 )  ; T o i s  a c h a r a c t e r i s t i c  t i m e  o f  t h e  i n s t a b i l i t y  a n d  t h e  n o n - l i n e a r  t e r m  

D'V 3 tells us that the velocity V has to reach a steady value after the initial 

p e r i o d  o f  g r o w i n g .  

E q u a t i o n  (2 )  p r e d i c t s  a c r i t i c a l  s l o w i n g  down w h o s e  c h a r a c t e r i s t i c  t i m e  i s  

T = T O (S-Sc)-I ; this means that 

T ÷ ~ when S ÷ S 
c 

Furthermore, the stationary mnplitude of V can be determined from (2) by making 

dV 1 / 2  
d--~ - = 0 ; o b v i o u s l y  V = ± V ° ( S - S )  

C 

+ 

>So 

V 

V 

~ c  

Fig.4 - Landau " p i c t ~ e "  of an i ~ t a b i l i t y  
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The critical slowing down as well as the dependence of the "order parameter" V 
1 

versus (S-S c) like (S-Sc)B , with B = ~ , are two well-known expected properties 

of a 2 nd order phase transition in the frame of a mean-field theory. 
[13~[14] 

The corresponding experimental behaviour in the Taylor as well as 

in the R.B. [15],[16] instabilities check perfectly well these points : critical 

slowing down is observed in the dynamical response of the velocity and the steady 

velocity amplitude varies as the square root of the threshold distance in both 

cases. 

FollowingLanda~s ideas we can also account for spatial effects adding a new 

term to (2) , 

1 = B'V + D'V 3 + ~ _--- 
3X 2 - % 

Physically speaking, a local spatial perturbation of the order parameter V wil~ 

be repercuted in space, along ~ direction on distances of order of magnitude 
x 

= ~o (S-Sc)-v 

l 
= ~ , and - ~o 

÷ ~ when S ÷ S j 
c 

is the product of an universal coefficient by d. 

10 

i! 

S u p ~ c r i t i c a l  ro l l s  (Ra > Rac) 

IVl prns -1 

~0 

Induced ro l l s  (R a < Rac) 
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\ 

30 l,O 

Fig.5 - Spatial  "correlation" e f f ec t s  in  Rayl~gh-Benard i ~ t a b Z Z i t y  
I~ Ra - Rac 

= Ra c 
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[16] both in This point has been precisely checked only in R.B. instability 
[17] 

supercritical R > R as well as in subcritical R < R regime (see Fig.5). 
a ac a ac 

As far as we kno~ in Taylor instability this same phenomenon exists but has not 

been yet subjected to experimental investigation. 

Before leaving the nice and powerfull analogy between the hydrodynamic insta- 

bilities and a 2nd order phase transition in the mean-field approach, let us play 

with the ~ expression (0). We said above that, in particular, the term C is zero 

for "symmetry reasons". This situation corresponds, in the R.B. problem,to the so 

called "Boussinesq" approximation (invariance of all the fluid properties with the 

temperature, except for the density). This invariance inside the fluid layer may be 

effectively broken if the viscosity ~ or the expansion coefficient ~ , for 

example, are temperature dependent. Then (0) must be rewritten as : 

= BV 2 + CV 3 + DV 4 C # 0 (3) 

Physically, the symmetry [V;-V] of the properties of the R.B. convection is broken, 

inducing a decrease of the symmetry in the convective structure : near the onset 

the ~0£f~6 are replaced by h~xago~. 
Furthermore from (3) one can deduce 

~V 
~t - B'V + C'V 2 + D'V 3 , (4) 

+ 

/ 

. . . . . . . . . . . . . . .  

Roils. Ro 

Fig.  6 - N o n - B o u s s i n ~ q  c o n v e c t i o n  
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the stationary convective solution of (4) is obviously of the form 

V = V + V I (R a-Rac) + ... 

A new, fundamental, feature appears (see Fig.6): There is a jump V of the velo- 

city at the onset of the instability. In terms of phase transition, the "transition" 

corresponding to non-Boussinesq R.B. convection is partially of I st order. This 

behaviour was experimentally checked in the case of R.B. convection in water near 

4 ° ; furthermore, and as expected, the convective structure near the onset is 

hexagonal 

SUPERCRITICAL CONVECTIVE PROPERTIES 

Up to now we discussed some of the properties of the Taylor and R.B. instabilities 

near their critical onset. 

We found striking similarities between the two kinds of instabilities, let us say 

in the domain S < S < 1,5 S . For more supercritical values of S this nice simi- 
e c 

larity does not hold anymore, the greater the value of S, the more important is the 

difference between the two kinds of instabilities. 

Let us specify that we compare behaviours of the "dissipatiVe" structure in both 
L x 

instabilities for comparable "aspect ratio" ~ = -~- , the Rayleigh-Benard convection 

being installed in a rectangular box whose L extension is d < L < L , see Figs.1 
y y x 

and 2. Let us arbitrarily consider a case where F x is of the order of 10. 

In Taylor instability, when T is very very slowly increased, A remains abso- 
a x 

lutely constant, may be up to 100 times the critical onset. 

What happens in the Rayleigh-Benard instability ? Only one thing is clear , 

there is a marked tendency to an £ncJlec~6e of the wavelength A x by increasing Ra/Rac. 

But, in a rectangular box of moderate aspect ratio F as considered here, the increase 

is discontinuous (the number of rolls has to remain integer). On the other hand,the 

Prandtl number Pr =~/D T plays a fundamental role in this process. (Let us assume, 

for simplicity that Pr > 10). Then A , in R.B. instability, is a complicated, 
X 

discontinuous, function of Fx, Fy, Pr,Ra/Rac. This wavelength change may be further- 

more time-dependent and seems to be very sensitive to uncontrolled boundary condi- 

tions as well as to any imperfections in the system. Obviously, complicated 

hysteretic behaviour accompanies this wavelength change (see Fig.7 for some of the 

possible behaviours). Ra 

This discontinuous, hysteretic, increase of A x versuS-~achaS not yet received 

definitive explanation. However one can find a powerfull approach in [19]. 

Let us emphasize that this complicate~A change in R.B. is the main difference 
X 

~In the case of the cylindrical cell used in ~0]with boundary conditions such that the 
rolls are axis-symmetric, the central ombilic allows a c0~nu0~wavelengthchange. 
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possible beflaviours in super -er i t i ca l  R.B. convective s t ru~ures  

~n the supercritical properties existing between Taylor and R.B. instabilities. 

From this difference we can expect that the higher bifurcations toward turbu- 

lence will be different and , at least, more simple and universal in the 

Taylor than in the R.B. instability. 

VERY SIMPLIFIED PICTURE OF THE TRANSITION TOWARD TURBULENCE IN TAYLOR INSTABILITY 

Many experiments have been devoted to this study [21=[22]'[231124] ~ . The crucial 

point is that the fundamental structure of wavelength A remains unchanged in all 
X Ta 

the studied --domain. 
Tac 

Roughly speaking one can notice three important steps between the onset of the 
T a 

Taylor instability and the turbulent state by increasing we can observe what 
' Tac 

follows: 

The first, next step (next "bifurcation") from Taylor steady, mostly two-dimensional, 

flow corresponds to the appearance of transverse waves superimposed on the horizontal 

Taylor vortices, see Fig.8. This step is considered as the first appearance of time- 

dependent effects ; indeed,the corresponding convective velocity measured ~ a fixed 

point of this new three-dimensional ro£~g structure is time-oscillating with a 

frequency f| . 
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Fig .8 -  T r a n s ~ o ~  toward turbulence in Taylor ins tab l l i t y~  
ref. [34]. 

The second next step is most generally considered [21] as the appearance of a 

second new time dependence in the velocity, the frequency of which f2 is not simply 

related to fl" See Fig.8. This flow has been called "quasipe~o~g" . (The name 

6£pe~O~C would be better) - The last (but not the least !) step is the appearance, 

in the Fourier frequency spectrum of the velocity~ of node or broad peaks. (This 

contrasts with the extremely narrow peaks f] and f2 ). The corresponding state of 

t] ~ow is very naturally called ~o~c flow~see Fig.8. 

m~en if the above picture is simplified and naive, one can notice that in the 

particular case of the Taylor instability, the transitions toward turbulence are - 

in principle - quite simple and natural. This beautiful simplicity is due, in our 

opinion, to the fact that the basic convective s t~u~ure  (Taylor vortices) is almost 

come, red from the onset until the chaos. Let us look - by contrast - to the extremely 

complicated situation found in the Rayleigh-Benard instability. 
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TRANSITIONS TOWARD TURBULENCEIN THE RAYLEIGH-BENARD CONVECTION 

Before entering in this intricate and highly complicated field 

remmrk. The different few steps toward turbulence, 

let us make a 

steady convection ÷ monoperiodic regime ÷ 

÷ biperiodic regime ÷ chaotic regime 

seem to be natural. This sequence is in contradiction with the view of Landau [25] 

and more coherent with the basic ideas of Ruelle and Takens[26]~for example. One can 

see in Fig.9 illustration of the above-described cascade toward turbulence. But we 

have to ask ourselves if this "natural" behaviour is u~que ; we will see that this is 

absolutely not the case ! 

V time dependences 

o 

o 

o 

V 

/ phase diagrams 

P(e) 

I 

power spectra 

I i 

r 
Fig. 9 - Some i l l u s t r a t i o n s  of  a cascade toward t u rbu l ence  

. . .  one of  t he  p o s s i b l e  c a s c a d ~  ! 
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Let us return to the specific case of R.B. convection in a rectangular box 

(F x= |0 F =3) containing near R a perfect structure of 10 two-dimensional rolls. 
y ac 

(similar to the Taylor vortices). By increasing R the convective amplitude grows 
a [23] 

and furthermore A has a tendency to increase • (with a p~fec t  structure we 
'x 

have a ~¢oF~dinuo~ increase, see Fig.7). 

The first new step after R is obviously the transition - at a certain thresh- 
ac 

old Rai I - from the two-dimensional structure to a new three-dimensional one (a new 

set of rolls develops at Rai I perpendicularly to the normal rolls existing just above 

Rac). In our opinion, this transition corresponds to that occurring in the Taylor 

problem when wavy vortices appear. But the instructive difference is that in the R.B. 

case one cannot predict the value of Rai I . The R a number is not the only re£evan£ 

parameter ; we have to know also the actual A value. Anyway the crucial point is : 
x 

the Rai I threshold is unambiguously related to A x (for a given box F ,£ and a given 
xY 

Prandtl number Pr > 10). See Fig. 10 for some experimental behaviours [27] . 

This means that the first step (Raii) toward turbulence (after Rac) can be under- 

stood only if the fundamental structure is well-defined and has a known A . Remember 
x 

from above that the actual A may be a post~o~ measured (if there is an optical 
x 

access to the structure) but n0t predicted (without external trick). 

Vx i Vy en ~.m s- ~ . J  
Huile aux silicones + 
v=0,1 st. _ Pr~130 + ~  

400 d :1 cm + - [ l "  

300 / + ' + ~ V . f  c 05 ~ /  x =98 . Vy / 

+/ Ax 1,25/z~ . , , / / V y  

200 / .7- ,- / / /C~.x=l,lAc /.~. 
, A "  /Vy 

J / * / 
100 , / /  / "  i/A, = Ac 

I I " I "  i "}1 .[ i I j" g 

O~ 5103 104 2104 3104 /,104 Ra 

Rac "If 
Fig.t0 - Exper ime~  behaviour of the Rai I t~a~i t ion  
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What happens at a further increase of R /R ? The answer is simple but~in 
a ac 

some sense, quite unexpected : the next step (which corresponds to the first appea- 

rance of a time-dependent effect) is directly the transition to the chaotic regime. 

In the rectangular cell with F = 12 9 £ =4 and Pr ~ 130 this chaos appears at 
x y 

RaT such that RaT/RacN20 . This chaotic time dependence of the velocity is identi- 

fied through the appearance of a broad, very low-frequency spectrum P(f) of the 

time-dependent velocity, see on Fig. ll . This chaos is clearly (but retros- 

pectively !) due to time-dependent A change co,elated to structure motion and re- 
x 

arrangement as schematically pictured in Figures 7 and 12. 

Let us try to give tentative explanations and models for these structure mo- 

tions giving rise to this kind of chaotic regime. 

A crucial point is the following : the A increase (as required in the R.B. 
x 

convection) implies some structuY~e "compressibil~y" to be achieved almost conti- 

nuously and without great energy expense. Let us call this A change "soft change". 
X 

1 

10 -4 

P(f) 

F =_~_ = 12 

i d = 1 5 c m  

~ - 42 
"\\ c 

• ~ . 

- k,,, averaged 80 h 

°% 

\ 

instrumentat noise 

I I I I I f(lO-3Hz) 1 0  .6  
0 1 2 3 4 5 

Fig.17 - Noise pow~t spectrum of the v~oc i t y  in a " l~ge  box" (R.B.convection), 
ref. [28]. 

We believe that this RaT threshold is not as well defined as R or R 
ac all " 
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For example, the compressibility of axially symmetric rolls in a cylindrical 

container under conditions of reference [20] is almost infinite due to the presence 

of the central ombilic, see Fig.]2a. On the contrary,in the case of a rectangular 

box of small F x , Fy containing a p ~ f e c t  structure of two-dimensional rolls, this 

structure is almost incompressible in ~ whole - the A increase is then discon- 
x 

tinuous implying a roll disappearance with a high energy barrier ("hard change"). 

A good compressibility in a rectangular box may exist, but only due to the pr~ence 

of defects. See as a first example Fig. 12b ; dislocation-like defects allowing 

dilatation(i.e, global A increase) just by the motion of the dislocation edge A or 
x 

B. The energy barrier in that case is obviously much smaller (if any) than that 

corresponding to the"hard"discontinuous case. Then defects allow "soft A change" ; 
x 

one can easily understand why F is of prime importance in the occurrence 

of this last mechanism (for a given Pr number, the lower the F , the higher the R a 

number for which dislocation defects can appear). Other mechanisms allowing a soft 

A x change exist (see Fig.12c). The important point is the following : 

All these mechanisms for a "soft increase" of A in rectangular geom~y imply 
X 

the existence of some kind of degen~acy iN the s£~uc~e to account for a finite 

/ / 

(b) 

I 
, 1 I 

compressibility. 

Ca.) 

Fig. 12 - Defect~ in  s u p e r c r ~ c a l  R.B. convective s t r u c t ~ e s ,  
refs. [29] ,[20] . 
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: lJ i l l '  
11 I 

I 

, s I 

\ 

/ 

~ jJ I Jl I t 
I! 

Fig.13 - Degeneracies in R.B. structures...one example 

The presence of such a degeneracy unlock obviously the structure (see Fig. 13) , 

allowing slow erratic motion of this structure. As a (first) consequence, the velo- 

city (measured at a fixed point) will fluctuate strongly and in a chaotic manner. 

But this chaotic regime, specific of the R.B. convection,is basically diff~ent from 

that observed in the Taylor vortices. Let us tentatively call this kind of 

turbulence "phase" turbulence or "structure" turbulence. But let us empha- 

size that this kind of turbulence is also t~ue turbulence. Obviously unlocked struc- 

ture will produce chaos in any local property ; but fu~thermore,the local structure 

change (i.e. local A fluctuations) does produce convective amplitude change as well 
x [30] 

as anharmonicity mode exchange . As a (second) consequence even the macrosco- 

pically averaged convective properties are chaotically time-dependent. See heat flux 

measurements [31],~32]. One can easily understand that the appearance of this "struc- 

ture" turbulence is very sensitive to the aspect ratio (the greater the box, the 

lower R /R = value for which it can appear) and also to the Prandtl number 
a ac RaT [19] 

(the lower the Pr number, i.e. the viscosity, the lower the Ra/Rac =RaT threshold) 

A naive but natural way to prevent "structure" turbulence in a rectangular contain~l 
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is to lower the F value in order to stabilize the structure through boundary effects, 

and then inhibit the A increase. Let us work, now, in a box which is so small X 
that only o~e A x (2 "x" rolls) can be present (F x= 2). Also in order to have o~ly 

2 "y" rolls, let us choose F = 1.5 . See Fig.|4a,the so called "small box" [27] 
Y 

Even in such a small box we cannot claim that the structure is imposed (block- 

ed) but we can reasonably expect that - at least - "phase" motion will be strongly 

reduced. We expect to have artificially introduced a phase and A stability which is 

very similar to that natura//y present in the Taylor instability x[23] 

Effectively, and as far as the structure is composed of two symmetrical three- 

dimensional rolls, we get the striking and expected feature : until more than 0he 

(or maybe a few) hundred t/m~Rac the convection remains absolutely steady ! The 

'~tructure" or "phase" turbulence has then been effectively blocked. 

The next step (first time-dependence appearance) consists in the occurrence of 

perfectly coherent monoperiodic oscillations of the velocity. One can see on Fig.]4b 

a power frequency spectrum of the velocity. Note the presence of harmonics of f 
I 

and the fact that the highest peak is more than 106 times the (instrumental) 

noise. Experimental identification of the mechanism of these highly coherent oscilla- 

tions is described elsewhere [33] 

......,,~ . . .  I , , . .~, . , . ,  

"....->..,:" ~ :".. ~:... 
} 1~_ _>)~.  s r rucrure  I I  

V Z  

,*, l 

10 

10 -1 

10 -3 

P(f) cl'n t s-2Fiz-~ (s) 

fl 

noise [eve[ 

Af = 10 -4 Hz 

~ 250 

, \  
i t | 

I 
/ | 

I / It 

%/ % 

M 

10 -5 f 
i i l 

0 10 -2 210 -2 310 -2 4-10 -2 Hz 

Fig.14 - Power spect~u~ of the o s c u l a t i n g  ve loc i t y  in  R.B. convection 
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Another further step may be the appearance of a second frequency f2 which is 

generally ~ not simply related to the previously described f! ("biperiodic" regime 

or "quasi periodic" regime). For more details see [21][32][34]. 

Naturally, the last step in the R.B. "phase locked" convection is the appea- 

rance of turbulence (chaotic regime). This turbulence manifests itself by a broad low- 

frequency spectrum centered at zero frequency together with the broadened oscilla- 

tion peaks previously described [27]. Summarizing, we found in the R.B. problem in 

a rectangular small box and with Prandtl number fluid Pr> 10 the usual sequence 

toward turbulence which was found in Taylor instability. But we have to emphasize 

that this "simple" behaviour is one of  the possible behavioum in a small box : 

the key of the problem is the actual convective structure. A "normal" structure(Fig.|4a) 

gives this behaviour. Many other kinds of structuremay exist with different parity 

and different amount of higher harmonics. Indeed, the number of degrees of freedom 

for structures is strongly reduced in a "small box" ; but keep in mind that many 

kinds of structure are however possible with corresponding compl~ely d i f f ~ e ~  time- 

dependent behaviours. 

In order to point out the extreme complexity of the time-dependent convection 

even in a small box, let us mention two striking, unexpected and appare~y confus- 

ing behaviours. 

In a given s m a l l  box filled with a given f l e d  and at a given (supercritical !) 

R number, one can obtain : a 

I! steady c°nvecti°n 

chaotic convection 

mono-or biperiodic convection, 

depending on the actua/ convective structure present in the fluid. 

Even more confusing situations are the following experimental results : 

Two identical twin c~lls (small boxes) filled with the same fluid and inserted 

between the same massive copper plates (then submitted to the same R number with the a 

same t h e r m a l  (h~st~ry) are generally exactly under the same convective regime. 

Sometimes however, we have found the following situation : 

One may be oscillating, the other being either turbulent or stationary ! 

These confusing behaviours are just mentionned to emphasize - for the last 

time - the fact that any behaviour cannot be either predicted or understood from 

the only knowledge of R a, Fx, Fy, Pr ...etc... etc.., if one does not specify the 

actual structure which is sensitive to so small uncontrolled perturbations (even in 

a highly careful experiment) that they remain far away from the attentlon of the 

standard R.B. experimentalist ! 

Indeed, the R dependences of fl and f2 being independent, f|/f2 ratio cannot a 
always be inco~nensura te  ! On the c o n t r a r y ,  f l  and f2 can be b e a u t i f u l l y  coupled [35] .  
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Anyway the R.B. experimentalist can have empirical "recettes de cuisine" in 

order to get "simple" structure in a small box,and in that case a simple mechanism 

of transition toward turbulence can be understood. 
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THEORY OF HYDRODYNAMIC INSTABILITIES 

Manuel G. Velamde 

Departamento de Fisica de Fluidos 

Universidad Autonoma de Madrid 

Cantoblanco (Madrid) SPAIN 

Introduction 

Three levels o£ description can be used to deal with (thermo) hydro- 

dynamic instabilities and non-equilibrium phase transitions at large. 

We have : 

i) The microscopic theory which starts from a Master Equation o£ the 

system's evolution, 

ii) The semimicroscopic , Lan@evin-type of approach, and 

iii) The purely phenomenolo@ical description which starts with the ma- 

croscopic equations (Navier-Stokes ,etc ) or suitably truncated versions 

of them (Landau approach, Lorenz model, etc ). With the introduction 

o9 a Landau-Ginzburg"potential" (or using the nowadays current ideas 

o9 elementary catastrophe theory ) a rather simplified and compact des- 

cription is achieved. As Graham /1,2/ has recently reviewed quite in 

depth the field I shall be concerned here only with an illustration of 

the Landau method /3/to describe for you some old and new predictions 

in the stability analysis o£ a binary fluid layer heated from below Or 

above. The cross-transport Soret effect, operating in the fluid layer 

(the effect of an impurity or an "external field") leads to a rather 

varied phenomenology. Besides the impurity extra field, a true external 

field can be considered, should the impurity be magnetically or electri- 

cally responsive or should the fluid be a nematic liquid crystal. Re- 

cently, it has been shown /4/ that the Soret-driven convection and 

the Rayleigh-B6nard convection of a homeotropic layer heated from below 

share a number of common features, at least to a qualitative level of 

description. The Sorer parameter is replaced in the nematic by the 

anisotropic property of the material constants of the fluid /5/. 

The Landau theory seems enough to accurately describe thermo-hydro- 
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dynamic instabilities within present-day experimental error bars. Non- 

classical corrections simp&y improve in extremely small regions or lead 

to extremely small corrections, at least for the cases studied until 

now /I-3/. Promising work remains to be done for the two-component 

Rayleigh-B@nard-Soret problem or for the liquid crystal case. However, 

as correlation lengths are of macroscopic size , side boundary effects 

may eventually prevent from seeing non-classical corrections. 

The basic features o£ the Landau theory /I-3/ are : 

i) The existence of an order parameter. In thermo-hydrodynamic instabi- 

lities this can be either the velocity field, or the temperature field 

or the mass-fraction of one of the components or the Nusselt convective 

heat transport. Considering the (convective) velocity field we have 

the amplitude and the spatial phase in a roll-type o9 convective struc- 

ture /See Berg~'s report to this Conference/. According to the evolution 

o9 the order parameter,transitions can be continuous (soft- or second- 

order type) or hard-excitation type, First-order transitions with 

hysteretic phenomena and metastability(subcritical instability, as 

called in the Fluid Mechanics jargon ). 

ii) The appearance of symmetry restoring fluctuations, 

iii) There is "critical slowing down" at continuous transitions where 

we have "exchange of stabilities", and 

iv) The appearance o9 "long range ordering" as determined by a macros- 

copic correlation length. 

Elementary exposition o£ the Landau approach 

i) Continuous transitions 

For a Newtonian and Boussinesquian single-component layer (standard 

9ils, water Far from Pour degrees,etc which are the analogue o£ the 

simplest homogeneous magnet) we have a continuous transition at the 

onset of Rayleigh-B~nard convection /3/ with "exchange o£ stabilities" 

/6/. A velocity distrubance , V , from the motionless regime (the pa- 

ramagnet) is expected to evolve in time according to the simple law 
N 

d V / dt ,v V , or more properly, using convenient scales and dimen- 

sionless quantities 

~o d~/ d'6 = ~'/~'r = 6V,with 6= (R-Rc)/R c (I) 
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where ~r denotes some relaxation time scale, and R c is the critical 

number £or the onset oP steady convection. Thus ~ = ~n 6-I' Rayleigh 

with ~o being a convenient time unit (Scale). Critical slowing down 

is described in Figure I, where Por the sake oP completeness we have 

plotted together the results Pound Pot both the single component , and 

the two-component layer at diPPerent values o£ the Soret separation. 

L o g  "~ 

x.\ \ \ \ ~  

\ \  \ \ ~  
\ \ .  \\ \x~,x 

\ \ 
\ \ 

\ 
-T -~ -5 -4 -3 o2 -I L o g  C 

Fig. 1. Characteristic time £or a Layer thickness d = 0.6 cm, with 

d 2 /~ = 320 s where ~ denotes the thermal diPPusivity 

o£ the liquid. S accounts Pot the Soret separation parame- 

ter. Values : S = 0 , ~o = 21 s ; S = 10 -3, ~o = 103 s; 

S 10 -I s. P I denotes the Prandtl = ' ~o = 1 5 x 103 = 03 

numb er. 

Further in the developped non-linesm roll-type regime Eq. (1) needs 

to be corrected. We have 

+ (2) 

However, the parameter ~ vanishes due to the symmetry o£ the problem. 

For a Newtonian and Boussinesquian Pluid heatin@ the layer Prom below 

is equivalent to cooling it Prom above ! 

We introduce a Landau potential through the relation 

gl d v / d '~  = / (31 
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The steady states o£ the system (whether convective or motionless) corres- 

pond to the extrema o£ the potential. Up to an additive constant we ha- 

ve 

° I (4) 

Like in the description o£ the simplest magnet we have no odd term in 

the Landau potential. We have the standard continuous, second-order ty- 

pe o£ transition as illustrated in Fig. 2. 

Fig. 2. The Landau potential £or the Rayleigh-B6nard transition with 

"exchange o£ stabilities". Linear stability analysis is en- 

ough to delineate the onset o£ steady convection. 

Figure 3 gives a typical evolution o£ the order parameter. 

AI max 

R 

Fig. 3. Order parameter (maximum velocity amplitude) versus Rayleigh 

number. S = I denotes a value o£ the Soret separation. For 

vanishing S the behavior is qualitatively identical. 
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Like in magnets , spatial inhomogeneities can be included in our 

Landau picture by merely de2ining a Landau-Ginzburg potential. For the 

"~ sin (kx + ~ ), simplest case o2 a roll structure where V = V max 

it su£2ices to introduce the 2ollowing 2unctional 

~ = ~ dx [a ~2 + b ~4 + c IIVVll 2] (5) 

Theory has been developped /7/ and experiments have been conducted/7,8~ 

which again show that the Landau approach explains 2airly accurately 

the data. As a matter o2 2act the onset o2 convection 2its very preci- 

sely with the point at which the in21uence o2 the vertical boundaries 

o2 the layer shows up at the center in a circular container or when 

such "in21uence" or "correiation" length reaches hal£ the value o2 the 

horizontal length in a square or rectangular container. 

ii) First-order transitions: Non-Boussinesquian e£2ects 

Non-Boussinesquian properties in Rayleigh-B@nard convection, like 

variations o2 the material parameters with temperature, the properties 

o2 water in the vicinity o2 2our degrees with anomalous variation o2 

its thermal expansion coe22icient,etc ,play a similar role to symmetry- 

breaking properties in a magnet. In the simplest case the Landau poten- 

tial which incorporates a non-Boussinesquian property is 

= 2+b 3+ (c positive) (6) 

where due to the odd term there is the possibility o2 hard-mode exci- 

tation (2irst-order transitions). A number o2 authors have carried out 

nJ~eexperimental work disclosing the hystertic phenomena and the metas- 

tability at the transition. For a recent paper see /9/. I shall come 

back to this when disc~ing the Landau approach to the two-component 

Rayleigh-B6nard problem. 
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Landau approach to the Rayleish-B~nard-Soret instability: First-, 

second-order transitions and tricritical point 

A large body o£ literature exists on the role o£ the Sorer e££ect 

in the stability o£ a horizontal two-component £1uid layer heated Prom 

below or above /10-12/.Here I shall consider o~ly the case oF a Newt- 

onian and Boussinesquian layer. 

According to the simplest approach to hydrodynamic instability/3/, 

For given boundary conditions, say dynamically Free, conducting and 

permeable to matter transport, the evolution o£ a roll-type oF steady 

convection (in the vicinity oF the transition point) can be expressed 

in terms o9 a mod@l description o£ the non-linear Fields. The minimal 

set oF modes needed For a relevant description involves one For the 

velocity £ield, two For the temperature distribution , and two For 

the mass-£raction £ield o£ one o£ the two components /13/. This indeed 

is a highly truncated representation oF the convection. Such a trunca- 

tion, however, provides a rather varied phenomenology which compares 

well, to a qualitative level, with the known experimental £acts/12,14/. 

The Five modes are the £ollowing/13,15/ 

1 • k •  = A I sin'~ kx sin~" z (7. a) 

1~ k T = A 3 cos~kx sin~z + A 2 sin 21~ z (7.5) 

~k NI= A 5 cos~Tkx sin~z + A 4 sin 2~z (7.c) 

where ~ , T and N I denote the stream £unction (velocity potential), 

the temperature distribution and the mass-£raction o£ the heavier com- 

ponent, k is the roll wave number at the onset o£ convection and x,z 

denote horizontal and vertical coordinates respectively. The amplitudes 

A. (i = I,...,5) are unknowns whose spatiotemporal evolution is gover- 
1 

ned by the Navier-Stokes equations, the Fourier and Fick equations, and 

the continuity equation. We have 

d At/tit = E k(A3+ SA5) +.~3 AI ( I + k2) 2 (8.a) 

d A2/dt = ½ A 1A 3 - 41~2A 2 (8.5) 
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d A3/dt ='~k A I + 4( 1 + k2)A3 + AIA 2 (8.c) 

d A4/dt = ½ AIA 5 + 4 ~2 rD (A 2 - A4 ) (8.d) 

d A5/dt = ~2(I + k 2) rD(A 3 - A5) - AIA 4 -TkA I (8.e) 

where, as before, R is the Rayleigh number and S measumes the influen- 

ce o£ the Soret cross-transport in the layer, r D is the ratio o£ mass 

to heat diffusivity. Clearly,the system (8) is the natural extension 

of the Lorenz model /3/ to the two-component problem. 

The steady solutions o9 (8) are the motionless regime (all A. vani- 
i 

shing) and the solutions corresponding to the quartiC equation 

= o (9) 

4 + 2 [27( i + r 2) 74 / 4 - R] 16/9 + A I A 1 

According to the convention (3) we have the following Landau poten- 

tial 

= A 16 /6 + A 14127( 1 + rD 2) 1~ 4 /4- R] 4/9 + 

32 A I ~ r D 27 /4- - R(1 + S + S/rD) /3  (lO) 

which is a sixth-order polynomial, very much like in the description 

o£ metamagnets or Helium mixtures /16/ and the laser~17~. 

Numerical calculations using (9) and (10) yield the following 

predictions (see Fig. 4). There is a line of first-order transitions 

in the region where according to linear stability theory/12/ oversta- 

bility is to be expected. As this first-order line remains below the 

locus of overstable modes (bifumcation without exchange of stabilities) 

the fluid layer should depart from the motionless state either via a 

hard excitation of finite amplitude or through a transient oscillation 

whose amplitude exponentially grows until the finite amplitude solu- 

tion is attained. This transition should exhibit metastability and 

the typical hysteretic phenomena o£ first-order transitions. These 

predictions agree well with experimental findings repotted in ~1/,and 

do not necessarily disagree with the observations given in ~8/. It 
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is rather sumprisins, however, that some linear oscillations can be mte- 

adily observed in a Rayleigh-B6na~d experiment,for such a linear mode o£ 

instability is generally a precursor of a non-linear (finite amplitude) 

precursor, and thus, should belong to a metastable branch or a branch 

o£ solutions with quite a narrow stability domain. On the other hand, 

the kind of (inverted) bifurcation /3/ just described for the two-com- 

ponent problem has been observed in recent experiments with homeotropic 

liquids heated from below /5/. 

I ! 
n ov / 

i RCI) 

R > O  I 

680 S < 0 / i 

' // 11 / 
670 

66o- I / / ' - - ~  

T 

650 LOGISI 

7 -6 -5 4 ~3 -2 -I 

Fig. 4. Phase diagram-according to non-linear stability analysis- 

for the five-mode problem (8).The quadrant corresponds to 

heating the layer from below and the denser component migra- 

ting to the warmer boundary. For the remaining quadrants, 

our non-linear analysis reproduces the predictions already 

given in /I0-I ~. T denotes the tricritical point. To the 

left o£ T, the heavy line corresponds to second-order, 

continuous transitions, R(2), as also predicted by linear 

analysis. To its right, the broken line also belongs to the 

linear prediction of second-order transitions. The dotted line 

2 °v, corresponds to (linear) overstability whereas the heavy 

line, R(I ) , is the line o£ first-order subcritical transitions. 

Another important prediction is that the first-order line meets the 

second-order one at a tricritical point/16/ where three coexisting 
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"phases" become identical. Figures 3,5 and 6 describe the behavior o9 

the "order p~ameter", A I , at various values o£ the Sorer sep~ation, S. 

As indicated already, Fig. 3 corresponds to a typical second-order tran- 

sition, in similar manner as when S vanishes. Fi@. 5 is an (inverted) 

bifurcation/3~, or first-order transition Pot a value of S below the 

Sorer region where line~ theory predicts overstability. Fi@. 6 also 
-3 

corresponds to an inverted bifurcation at S = 10 , ~d thus to 

a h~d-mode excitation where according to line~ theory, instability 

proceeds throu~ a complex ei@envalue (Overstability). Notice that the 

Rayleigh number for overstability, R °v, is smaller than the line~ 

critical Rayleigh number for the onse~ of steady convection, though 

~v remains below the onset of non-line~ steady convection. 

o 

Fig. 5. Behavior of the order p~ameter, maximum value of A I plotted, 

in a first-order tr~sition to steady convection. 

R~ Rc~ n 

< 

Fig. 6. Behavior o£ the order parameter, A~ ax, in a first-order tr~- 
m 

sition where, according to line~ theory, overstability is 

predicted. 
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In conclus$on,c&reful experiments are %obeencouraged in either the 

two-component Rayleigh-B6nard problem or in the nematic liquid case 

where a rather rich phenomenology is expected. As Landau theory seems 

valid ,indeed,£or the description o£ the main Features o£ non-equili- 

brium phase transitions, theory and experiments on these two problems 

might lead to a better understanding o9 "tricritical " phenomena and 

all that. 

The results reported here heavily rely upon the computer work o£ 

my collaborator J. Camlos Antoranz, to whom I express my sincere thanks. 
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FULLY DEVELOPED TURBULENCE AND RENORMALIZATION GROUP 

P.L. Sulem , J.D. Fournier and A. Pouquet 

C.N.R.S., Observatoire de Nice, France 

I. INTRODUCTION. 

The word turbulence is used to describe diverse phenomena. In this paper, we shall 

restrict ourselves mostly to incompressible flows described by the Navier-Stokes (NS) 

equation 

i 8_~ + u . Vu = - Vp + ~ V2u 

V . u = 0 (+ boundary and initial conditions) • 

(1) 

In this equation, u denotes the velocity, p the pressure and ~ the kinematic viscosi- 

ty. The relative importance of the non-linear terms to the viscous one is characteri- 

zed by the Reynolds number 

v 
R o o ~ (2) 

where ~ is a scale characteristic of the geometry of the flow and v a typical velo- 
o o 

city difference across a distance of order ~ . For small values of the Reynolds num- 
o 

ber, the flow is laminar. As the Reynolds number is increased, there may be a compli- 

cated sequence of instabilities leading eventually to a turbulent flow in which the 

velocity correlation decays to zero in the limit of long time separation (Lorenz, 

1963; Martin, 1976; Gollub and Swinney, 1975; Normand, Pomeau and Velarde, 1977). 

Asymptotically, in the limit of infinite Reynolds number, the regime of fully develo- 

ped turbulence is achieved. The flow has a highly chaotic behaviour with universal 

statistical properties in sufficiently small scales. These small scales are nearly 

homogeneous, isotropic and independent of the large scale motions, the instability of 

which is the source of the turbulent energy. The last property permits one to achieve 

the mathematical description of the flow by replacing the source of turbulent energy 

in the large scales by a statistically defined external force. 

From a theoretical point of view, fully developed turbulence is essentially an unsol- 

ved problem. The main understanding we have is based on phenomenological analysis 

suggested by experiment. Most of the amlytic theories of turbulence developed during 

the last decades can be viewed as semi-heuristic closures which reformulate the phe- 

nomenology of turbulence in a more quantitative way. They are models rather than ap- 



322 

proximations in the sense that they do not appear to be a given order expansion in 

terms of a small parameter. An important exception is provided by the Renormalization 

Group (RG). The success of this technique in critical phenomena, which also display 

universal self-similar properties, has raised some hope for turbulence. Up to now 

the RG has succeeded only in studying the large scale motions of a randomly stirred 

fluid. 

We present in this paper a brief survey of these different approaches to turbulence. 

Special attention is paid to the Renormalization Group. For more details about the 

other approaches, the reader is referred to the review papers of Kraichnan (]975a), 

Orszag (1977), Nelkin (]978), Rose and Sulem (1978) and to the book of Leslie (1973). 

A comprehensive survey of the physics of turbulence is given in Monin and Yaglom 

(]97], ]975). 

2. THE INERTIAL RANGE : SELF SIMILARITY AND UNIVERSALITY. 

The experimental result on three-dimensional turbulence which has been the focus of 

theoretical interest is the existence of a range of eddy sizes {~; ~o>>%>>~d}, called 

inertial range where energy production and dissipation are negligible and where ener- 

gy is only "cascading" at a constant rate from large to small scales. In this range, 

the energy spectrum 

E(k, t) ~ k 2 e l~'r < ~ ÷ ÷ u(x, t) . u(x + r, t) > d~ (3) 

exhibits a self similar behaviour 

E(k) = k -m (4) 

with an exponent m close to the value 5/3 predicted by Kolmogorov (1941) on the basis 

of a phenomenological analysis. The inertial range is limited in the small scales by 

a dissipation range where dissipation copes with non-linear transfer. This latter 

range is pushed to smaller and smaller scales as the viscosity tends to zero. 

Three parameters are associated with the equations of motion: the kinematic viscosity 

~, the characteristic stirring length ~o at which turbulent energy is put into the 

f l u i d  and the  r a t e  o f  e n e r g y  i n p u t  p e r  u n i t  mass  e ~ v /£o"  Kolmogorov 1941 t h e o r y  

( i n  s h o r t  K41) a s sumes  t h a t  i n  the  ca scade  a l l  d e t a i l e d  s t a t i s t i c a l  i n f o r m a t i o n  

a b o u t  the  s o u r c e  o f  e n e r g y  in  t he  l a r g e  s c a l e s  i s  i o s t  e x c e p t  t he  i n j e c t i o n  r a t e  c , 

b e c a u s e  i t  e q u a l s  the  t r a n s f e r  r a t e  (and a l s o  the  d i s s i p a t i o n  r a t e ) .  S ince  the  d i s s i -  

p a t i o n  i s  n e g l i g i b l e  in  t he  i n e r t i a l  r a n g e ,  the  v i s c o s i t y  does n o t  e n t e r  the  e n e r g y  

s p e c t r u m ,  and d i m e n s i o n a l  a n a l y s i s  y i e l d s  
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E(k) ~ ~ 2/3 k-5/3 (5) 

This spectrum can also be derived by a more dynamical argument using a simple pheno- 

menological model (Frisch, Sulem and Nelkin, 1978). 

The K41 theory predicts also the form of higher order correlation functions in the 

inertial range, for example the normalized structure function 

S (%) = <lu(x) - u(x + &)]P> . (6) 
P 

<In(x) - u(x + %)]2> p/2 

Since the energy transfer rate ~ is the only external parameter which plays a role 

in the K41 theory, a simple dimensional analysis indicates that S (k) should be in- 
P 

dependent of p and %. This prediction is actually contradicted by the experimental 

results which show that S (g) increases with I/~ and p (Van Atta and Park, 1972; 
P 

see also Monin and Yaglom, 1975, chap. 25 for review). This departure is believed 

to be related to the fact that K41 does not take into account the statistical fluc- 

tuations of the energy transfer. The experimental evidence of the intermittency of 

the flow, i.e. the concentration of the small-scale structures on smaller and smal- 

ler fractions of the available space as the eddy size decreases (Batchelor and 

Townsend, 1949; Kuo and Corrsin, 1971, 1972) is in turn believed to be a consequen- 

ce of such fluctuations. Amplification of these fluctuations along the cascade has 

been numerically observed on a model based on a wave packet description of the NS 

equation (Siggia, 1977). 

Kolmogorov (1962), Obukhov (1962) and after them Novikov and Stewart (1964), Yaglom 

(1966), Mandelbrot (1974, 1976), Frisch et al. (1978) have proposed modifications 

of the K41 theory to take intermittency into account. The energy cascade is descri- 

bed as a breakdown process of eddies into smaller eddies which fill a lesser por- 

tion of the space with a spatial distribution prescribed by the model. The statis- 

tics of the velocity field at scale I/k then depen~upon the number of steps requi- 

red to generate eddies of size I/k starting from eddies of size ~o' and the energy 

spectrum becomes 

E(k) ~ ~ 2/3 k-5/3(k ~o)-B . (7) 

The exponent B is not determined by dimensional arguments. It can be expressed (dif- 

ferently according to the models) in terms of the Hausdorff dimension of the "frac- 

tal" set on which dissipation concentrates in the limit of zero viscosity (Mandel- 

brot, 1976; Frisch et al., 1978). 
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The universal self-similar behaviour of turbulence in the limit of infinite Reynolds 

number and large wavenumbers has been compared with the universality of critical 

phenomena when the temperature approaches the crT~al tempez~ture in the limit of small 

wavenumbers (Nelkin, 1974, 1975; de Gennes, 1975). In this comparison K41 has been 

considered as the analog of the Landau mean field theory of phase transitio~ in the 

sense that they both neglect statistical fluctuations of the energy flux and of the 

order parameter,respectively (Siggia, 1977; Nelkin, 1978). In critical phenomena 

for spatial dimensions d larger than a crossover dimension d the mean field theo- 
e 

ry becomes exact. It has thus been asked whether there exists a dimension above or 

below which intermittency disappears (Nelkin, 1975; de Gennes, 1975). Up to now 

there is no such evidence, even in the limit of infinite dimension (Fournier, Frisch 

and Rose, 1978)° Notice that in critical phenomena~ when the mean field theory is 

exact, depar~resof the Hamiltonian from a quadratic functional are irrelevant, 

and consequently the evolution equations are linear. Within such an analogy the K41 

energy cascade would be describable in a linear framework, which seems rather doubt- 

ful. 

The notion of universality itself does not have the same meaning for fully develo- 

ped turbulence as for critical phenomena . In turbulence, universality means that 

the sufficiently small scales are independent of the detailed initial conditions. 

For a Hamiltonian system this can plausibly correspond to the fact that the state 

of thermal equilibrium is characterized only by the isolating integrals. On the 

other hand, in critical phenomena universality means that certain properties of the 

system in the vicinity of the critical point, such as the critical exponents, are 

independent of the detailed form of the Hamiltonian. One is then led to compare uni- 

versality in critical phenomena with the sensitivity of turbulence to changes in the 

NS equation. Following Kraichnan (1975a), let us consider a modification of the cou- 

pling coefficients in the non-linear terms of the NS equation which preserves the 

integral of motion. This affects in general the locality of the interactions in Fou- 

rier space and thus the step size in the cascade. If the build-up of intermittency 

depends indeed on the effective number of steps, then the build-up and the value of 

the exponent B correcting the K41 spectrum will be affected by this alteration. 

3. ANALYTIC THEORIES OF TURBULENCE. 

We present in this chapter the statistical approaches to turbulence made in a spirit 

somewhat akin to mode-coupling formalism (Kawasaki, 1968, 1969), and which 

were developed around the Direct Interaction Approximation (DIA) of Kraichnan 

(|958, 1959). There exist several derivations of the DIA. One of them mak~ use of 

the formalism developed in quantum electrodynamics, which leads to the Dyson- 

Schwinger equations. As adapted to classical systems (Martin, Siggia and Rose, |973; 
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Pythian, 1977) it leads,for homogeneous turbulence~to three coupled equations for 

the velocity correlation, the response function and the three-point vertex functio~ 

The DIA can be obtained by replacing in those equations the renormalized vertex by 

the bare vertex. It is tempting to associate the renormalization of the response 

function to the idea, developed in hydrodynamics at the end of the 19th century, 

that the nonlinear interactions can be partly described by a turbulent viscosity. 

Kraichnan (1958) noticed that the master equations of the DIA are exact consequences 

of a "stochastic model" obtained by coupling many replicas of NS equations to each 

other with random coupling coefficients. This insures the realizability of the DIA, 

for example the positivity of the energy spectrum. For the study of homogeneous 

turbulence, the DIA has however the defect of being non-invariant under random Gali- 

lean transformations (Kraichnan, 1964 ). This leads to a spurious description of the 

advection of the small scales by the large scales. The DIA predicts in particular 

an inertial energy spectrum 

E(k) ~ (7 v )I/2 k-3/2 ) (8) 
o 

where v is the characteristic velocity of the most energetic eddies. To cure this 
o 

deficiency, Kraichnan (1965, 1977) proposed to use a Lagrangian description. The 

theory is then invariant under random Galilean transformations but the resulting 

equations are quite involved. An alternative non-Eulerian framework leading to K41 

scaling has recently been proposed by Hornet and Lipowsky (1979). For both these 

theories the realizability is not insured. 

In view of these difficulties, a class of phenomenological modifications of the DIA 

has been proposed (Orszag and Kruskal, 1968; Kraichnan, ]971a, 1971b). 

This leads to realizable Galilean invariant equations, consistent with K41 theory 

and thus neglecting a priori intermittency. These equations can also be viewed as 

semi-heuristic closures providing a quantitative reformulation of the K41 theory 

(see Orszag, 1977; and Rose and Sulem, 1978, for review). The simplest of these mo- 

dels, the Eddy Damped Quasi Normal Markovian (EDQNM) approximation leads to an int~ 

gro-differential equation for the energy spectrum which, contrary to the primitive 

NS equation, can be numerically integrated at very high Reynolds numbers. The rea- 

son is that the spectrum,being an averaged quantity, has a gentle variation with 

wavenumber and can be adequately computed using a logarithmic diseretization. In 

this way Reynolds numbe~up to 106 have been achieved. Such closures give the pos- 

sibility to study evolution problems, Moreover, their integration in various dimen- 

sions has confirmed or disclosed the existence of other self-similar regimes than 

the celebrated direct cascade of Kolmogorov. 

In three-dimensions, the numerical calculations indicate that for arbitrary initial 
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conditions, the energy spectrum evolves indeed toward the K41 spectrum which is a 

stationary solution in the limit of zero viscosity (Andr~ and Lesieur, 1977). Com- 

parisons with direct numerical simulations of the NS equation at moderate Reynolds num- 

ber and with experiments indicate that the closures give an adequate qualitative 

description of the evolution of the energy spectrum at those Reynolds numbers 

(Herring and Kraichnan, ]972). 

In two dimensions, the non-linear terms of the NS equation have the property of 

conserving the vorticity ~ = curl u of each fluid element as it follows the velo- 

city field . A special consequence is the conservation of the enstrophy 

~ = <curl u)2> = I~ k2 E(k) dk , (9) 

which excludes the possibility of significant energy transfer towards the small 

scales. For large Reynolds numbers the enstrophy cascades to the small scales with 

a -3 energy spectrum (with a possible logarithmic correction). If energy is injecmd 

into the fluid, it cascades to the large scales with a -5/3 energy spectrum (Kraich- 

nan, 1967; Leith, 1971; Pouquet, Lesieur, Andr~ and Basdevant, 1975). A description 

of the inverse energy cascade by a hierarchical clustering of discrete vortices has 

been proposed by Aref (1978). Intermittency corrections are expected to decrease 

the 5/3 exponent in this cascade (Kraichnan, 1975b, Frisch et al., 1978). 

The significant difference between turbulence in two and three dimensions, in parti- 

cular in connection with the direction of the energy cascade (ultraviolet in three 

dimensions and infrared in two dimension~, leads one to consider turbulence in non- 

integer dimension 2 <d <3 (Frisch, Lesieur and Sulem, 1976; Fournier and Frisch, 

1978). The enstrophy does not go over continuously into another conserved quantity; 

nevertheless, the energy cascade is in the infrared direction for 2 ! d < d c 

(d c ~ 2.05) and in the ultraviolet direction for d > d c. For 2 < d < d c, in addition 

to the infrared -5/3 energy cascade, there appears a fluxless ultraviolet -m(d) ran- 

ge with m varying with dimension from 3 to 5/3. Similar results were obtained by 

Bell and Nelkin (1977, 1978) using a simple phenomenological model. 

4. RENORMALIZATION GROUP FOR NAVIER-STOKES EQUATION. 

The self-similarity of the inertial range has suggested a renormalization group 

approach to turbulence (Nelkin, 1974). Actually, no RG calculation starting from the 

Navier-Stokes equation has succeeded to date in treating the inertial range. The 

main difficulty lies in the fact that a cascade does not seem to be obtainable by 

a perturbation of a linear Langevin equation. In contrast,the infrared properties of a 

randomly stirred fluid have been studied with the RG, both in the formulation of 
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Wilson (1971) and of field theory. We discuss mainly in this chapter the first ap- 

proach which has been implemented in its dynamical version (Ma and Mazenko, 1975) 

by Forster, Nelson and Stephen (1976, 1977; to be referred as FNS). The field theo- 

retical approach is discussed in chapter 5. 

Let the NS equation be written in Fourier space with wavenumbers extending from 0 

to an ultra-violet cut-off A. The Fourier components of the velocity and forcing are 

separated in two groups: the first one for which Ae -£ < k ! A is denoted by a sub- 

script >, and the second one (k i A e -~) by <. The parameter ~ is positive and 

the limit % ~ = is eventually taken. Without any approximation, reference to velo- 

city Fourier components u > can be suppressed by the following procedure: using the 

NS equation, u > can in principle be written in terms of u < and of the forces f> ; the 

expression for u > is then substituted in the equation of motion for u < . In the 

resulting equation for u < , variables are then rescaled to make it look as much as 

possible like the original equation. This defines the RG transformation. 

It turns out that in the problem studied by FNS, there is a crossover dimension d 
c 

~epending to some extent on the properties of the forcing) above which the iteration 

of the RG transformation makes the non-linear terms essentially negligible. For d 

slightly less than d one can solve perturbatively in powers of ~ = d - d. In 
c c 

addition, the new couplings generated by the RG transformation turn out to be irrele- 

vant variables as ~ + ~, and they can often be neglected at least for the leading 

approximation. Instead of defining the crossover in terms of space dimensionality, 

it is also possible to keep the space dimension fixed and to consider a crossover 

for the forcing spectrum (Fournier, 1977).T~is permits ~etostudy problems which can- 

not be analytically continued in non-integer dimensions, for example helical turbu- 

lence. 

The suppression of the small scales in the NS equation cannot be carried out exactly. 

But, since iteration of the RG transformation makes the strength of the non-linear 

terms tend either to zero or to E I/2, a perturbative calculation in powers of the 

non-linear terms is feasible, at least for sufficiently large %. The generality of 

the results obtained in this way is subordinated to a universality hypothesis. 

In the case of the forced NS equation, to the leading approximation~the elimination 

of the small scales produces a renormalization of the viscosity and possibly of the 

forcing but not of the vertex. A phenomenological interpretation can be given to 

the renormalization of these coefficients: the small scale motions generally produce 

an energy sink for the large scales described by an'~ddy viscosity", and also an 

energy source, described by an internal forcing or "eddy noise" (Rose, 1977). 
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It appears that indefinite iteration of the RG transformation where only second or- 

der diagrams are retained, generates the very diagrams the summation of which gives 

the DIA. It follows that near the crossover, and in the limit k ÷ 0, the DIA is in- 

deed an 0(e 2) - approximation. This is not necessarily trueanymore in magnetohydr~ 

dynamics (see chapter 6). 

The infra-red behaviour of a forced turbulence depends to some extent on the proper- 

ties of the external forcing. The internal forcing, generated by the elimination of 

the small scales, has a spectrum proportional to k d+l and there are two broad clas- 

ses of universality according to whether it is negligible or not when compared to 

the external forcing. When the internal forcing is negligible or comparable to the 

external one, the fluid is at thermal equilibrium and the energy spectrum obtained 

corresponds to an equipartition of energy among the Fourier modes (models C and A 

of FNS) . The velocity probability distribution is gaussian and there is a fluctua- 

tion - dissipation theorem. This property permits other approaches to the problem, 

such as a Fokker-Planck description (Enz, 1978). On the other hand, when the exter- 

nal forcing is dominant (model B of FNS, model R of Fournier 1977), the fluid is in 

contrast far from equilibrium. Let us give for this case some details on the proce- 

dure. We assume that the forcing is a Gaussian white noise with a spectrum 

F(k) ~ Dk -r with -(d + I) < r. After elimination of the small scales, the varia- 

bles are rescaled according to : 

z~ 
~ = eg k ; ~ = e ~; 

% % 
u(k, ]) e -r~ < = u (k, ~) ; ~(~ , ~) = e(Z- T)~ f<(k, ~) .  

(10) 

It is convenient to choose the scaling factors z and T in such a way that the resca- 

led velocity satisfies a NS equation with viscosity and forcing intensity being un- 

changed. For the j-component of the velocity, this equation reads : 

% 
(-i~ + ~2) uj(~, ~) = D I/2 ~j(~, ]) + i%(£)~m(6jn - j n) 

• ~2 

( 1 1 )  

x j d~ d~ % -+ ~ )  % + Um(P, Un(q, ~- ~), 

~=+ p+~ 

where the coupling coefficient ~(~) satisfies,to the leading approximation 0(c2), 
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d ~(£)- ~(£)d£ [ r + 3- C(d)~ ~2(£)] ; ( 1 2 )  

C ( d )  i s  a p o s i t i v e  c o n s t a n t  d e p e n d i n g  o n  s p a c e  d i m e n s i o n  o n l y .  C l e a r l y ,  r = - 3 i s  a 

c r o s s o v e r  f o r  t h e  b e h a v i o u r  o f  t h e  c o u p l i n g  X(£)  a s  £ ÷ ~ .  I n d e e d ,  f o r  ~ = r + 3 < 0 

~(£) tends exponentially to zero as £ ÷ ~ and the nonlinear terms are negligible. 

The scaling factors are then found to be 

z = 2 ; r = d + ~ (13) 

1 / 2  
For ¢ > 0, the coupling coefficient ~(£) has a finite limit of order ¢ . Near 

the crossover, the velocity field for wavenumbers ~ of order unity can then be 

computed perturbatively. The scaling factors become 

z = 2 - ~ ; T = d + l . (14) 

For ~ = 0, the coupling %(£) tends to zero as I/~ and logarithmic corrections are 

to be taken into account. 

For negative or small positive ~, one can discard the nonlinear terms in equation 

(11). Returning to the unscaled variables, one then obtains the effective equation~ 

valid in the limit k + 0; 

(- im + ~(k) k 2) u(~, ~) = D I/2 f(~, ~) (15) 

where the renormalized viscosity is given by ~(k) ~ k z-2. On the trivial side of 

the crossover (c < 0), the damping ~(k) is, as expected, independent of wavenumber, 

whereas for ~ > 0 it behaves as k -~/3. From the Langevin equation (15), one can 

easily deduce the statistical properties of the velocity field and in particular 

the energy spectrum 

k l _ C  ~ k 1 -~  i f  ¢ < 0 ( 1 6 a )  

E(k) ~ - -  

1 ~(k) k l- 2c/3 if c > 0 (16b) 

The renormalization group thus indicates that for small positive E, the effect of 

small on large scales may be represented by a renormalized viscosity of the form 

~(k) ~ (E(k)/k) I/2. This coincideswith the usual expression of the "eddy viscosity" 

obtained on phenomenological grounds (without the restriction of small E) when the 

transfer is local (Heisenberg, 1948). In this context, the spectrum (|6b) results 
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from an equilibrium between external forcing and transfer. 

5. FIELD THEORETICAL APPROACH. 

The phenomenological interpretation of the spectra obtained with the renormalization 

group suggests that their validity is not restricted to the neighbourhood of the 

crossover. The same results have also been obtained using the EDQNM (Fournier and 

Frisch, 1978) or a variational method (Lucke, 1978). Anticipated by Forster et al., 

the generality of such results has been established systematically by de Dominicis 

and Martin (1978) who have used the RG as formulated in field theory. This method, 

whose utilization in static critical phenomena is now standa~(Brezin, Le Guillou 

and Zinn-Justin, 1977),has recently been implemented for dynamical critical phenome- 

na (de Dominicis and Peliti, 1978). Let us briefly recall the procedure in the case 

of the Navier-Stokes equation. 

One considers a generating functional for the various correlation and response func- 

tions of the velocity field (Martin, Siggia and Rose, 1973; Phythisn, 1977). One 

evaluates the superficial divergences which, in the absence of ultraviolet cut-off 

A, appear in a perturbative calculation of the correlation functions. Such a power 

counting exhibits the same crossovers which obtain in the Wilson formalism 

(Abarbanel, 1978; de Dominicis and Martin, 1978). One then introduces, in front of 

the coupling constants (and possibly of the fields), renormalization factors which 

can be made to depend on a parameter ~ (which appears to be a wavenumber). These 

factors are chosen in order to suppress the logarithmic divergences arising at the 

crossover when the cut-off A becomes infinite. The physical quantities (e.g. the 

correlation functions) calculated from the renormalized generating functional must 

be independent of the parameter ~, at least in the range of wavenumbers ~ << A. In 

other words, the total derivative with respect to ~ of the velocity correlation 

function must vanish identically: this identity is called a Callan-Symanzik equatio~ 

By solving this linear partial differential equation by means of the characteristics 

method one obtains the scaling laws of the correlation functions. The equations of 

the characteristics are the analog of the recursion equations of the Wilson forma- 

lism. Those equations are usually obtained perturbatively. There are three renorma- 

lization factors to determine,those of viscosity, forcing and vertex. Actually, the 

forcing is either not renormalized (model R) or renormalized in the same way as the 

viscosity, because of the fluctuation-dissipation theorem (models A and C). A Ward 

identity linked to Galilean invariance insures that the vertex is not renormalized. 

The existence of a stable non-trivial fixed point for the equation of the paramater 

playing the role of a Reynolds number then determines the renormalization of the 

viscosity without recourse to perturbative calculations. Thus the results are not 

restricted to small s , provided that no neglected operato~become relevant. 
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When the external forcing is not renormalized (model R), an analysis based on the 

normal dimensions of the operators restricts a priori s = r + 3 (where r is the for- 

cing exponent) to be smaller than 4,avalue which corresponds to a -5/3 energy spec- 

trum. The relationship between this limit spectrum and the K4| spectrum for the ene~ 

gy cascades - where both forcing and dissipation are negligible - is still unclear. 

It must nevertheless be stressed, as done by Martin and de Dominicis (1978), that 

the anomalous dimension corrections to the operators, which vanish when s = 0, 

could modify the domain of validity of the calculation. In this context one may 

recall that the semi-heuristic EDQNM approximation indicates that in dimensions 

close to 2 (d < d ~ 2.05) the validity condition for the FNS result (which de- 
c 

mands that the energy transfer be negative) is more stringent than c < 4 (see 

Fournier and Frisch, 1978, fig. |b). 

6. INFLUENCE OF NEW COUPLING. 

In this chapter we look at the modifications of the results obtained in chapter 4 

when a new coupling enters the NS equation. An example is provided by (three-dimen- 

sional) helical turbulence, i.e. a turbulence which is invariant under translations 

and rotations but not under plane reflections. In this case the helicity 

H = <u. curl u>, which is an invariant of the inviscid NS equation, does not vanish. 

This leads us to consider in parallel with the energy injection and the energy spec- 

trum, the helicity injection and the helicity spectrum. It appears that this symme- 

try breakdown is never more than a marginal perturbation, in the sense that it does 

not modify the crossover and the energy spectra found in the purely isotropic case 

(Pouquet, Fournier and Sulem, 1978). 

We have also considered the infrared properties of turbulence in a conducting fluid 

governed by the magnetohydrodynamic (MHD) equations when the velocity u is coupled 

to the magnetic field b through the Lorentz force b • Vb : 

~u V 2 ~-~ + u . Vu = - Vp + ~ u + b .V b + f v 

~b V 2 fM ~-6 + u . Vb = b .Vu + ~ b + (17) 

V . u = 0 ; V • b = 0 , 

where ~ denotes the magnetic diffusivity. We shall restrict ourselves to the non- 

helical case since in MHD, helicity has a destabilizing influence on the large scale 

magnetic fields leading to turbulent dynamo (see Moffatt, 1978, and references there 

in). Such an effect does not appear at this point to be tractable by the RG proce- 
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dure. In the context of non-helical MHD turbulence one may investigate the sensiti- 

vity of the velocity field to the Lorentz force. To deal with this problem in the 

RG framework it seems necessary to introduce, in addition to the kinetic forcing 

fV, a (somewhat academic) magnetic forcing fM. In three dimensions, if the magnetic 

forcing is strong enough in comparison with the kinetic forcing, then even for ~ > 0 

the advection is negligible, and the dynamics of the velocity field is governed by 

an equilibrium between Lorentz force and viscous damping. This situation corresponds 

to a new stable fixed point in parameter space (referred to as the magnetic fixed 

point). To be specific, let us assume a kinetic forcing spectrum FV(k) ~ k 3 - ~ 

and a magnetic forcing spectrum FM(k) k 3 M M - E with ~ = a~. We concentrate on 

e > 0. For a < I/4, only the non-magnetic fixed point is stable and the Lorentz 

force is not relevant. For a > 1.16, this fixed point is unstable and only the magn~ 

tic fixed point is stable. Between these two values there is a universality break- 

down in the sense that the two fixed points are simultaneously stable. When the 

Lorentz force is not relevant, the magnetic field behaves as a passive vector and, 

similarly to the passive scalar studied by FNS, the effective large-scale Prandtl 

number is universal. The magnetic energy spectrum is given by 

EM(k) ~ k ~ - (a - I/3) e (18) 

A peculiar result is that for | <a <l.16, and for initial values of the parameters 

in the attractive domain of the non-magnetic fixed point, the magnetic energy domi- 

nates the kinetic energy in the large scales and,nevertheless, the Lorentz force is 

negligible in comparison with the inertial force. The stability of the non-magnetic 

fixed point in this range is due to the renormalization of the Lorentz force vertex 

by the RG procedure. No invariance principle prevents in effect such a renormaliza- 

tion. Consequently, the DIA which consists in neglecting the vertex corrections is 

not a priori exact in the MHD problem in the limit k ÷ 0. 

7. CONCLUDING REMARKS. 

Most of the properties of fully developed turbulence, in particular the cascade phe- 

nomenon, are not to date apprehended within a systematic theory. The closure techni- 

ques have provided a semi-heuristic description of turbulence compatible with Kolmo- 

gorov 1941 phenomenology and as such do not describe the intermittency. The experi- 

mental investigation of intermittency is mostly concerned with its effect on high- 

order velocity correlation functions. The geometrical aspect of intermittency is 

still fuzzy. One would like to be confronted with a map of the region with strong 

velocity gradients. This demands the development of visualization techniques and 

of precise measurements of velocity gradients. 
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Another "experimental" approach involves resorting to computers. The direct nu- 

merical simulation of isotropic turbulence generally based on spectral methods 

(Orszag and Patterson, 1972). It is only in two dimensions that the present calcula- 

tions have achieved Reynolds numbers large enough (104 ) to display an inertial ran- 

ge, here the enstrophy cascade (Orszag, 1976). The interactions between the Fourier 

modes in the enstrophy cascade are non-local~and this probably makes the intermit- 

teney of small-scale two-dimensional turbulence very different from the three- 

dimensional case (Kraichnan, 1975b). In two-dimensional MHD turbulenc~ in contrast, 

the enstrophy conservation is broken by the Lorentz force~and there is an energy 

cascade towards the small scales (Pouquet,1978). A calculation of Orszag and Tang (1979) 

displays intermittency~and further investigations are under way. As for three-dimen- 

sional NS turbulence, the Reynolds numbers presentlyac~eved (of order of a hundred) 

are too moderate to demonstrate intermittency unambiguously (Siggia and Patterson, 

1978). Higher Reynolds number simulations are needed. This demands the development 

of new codes, possibly using moving mesh schemes, in order to refine the calculation 

in the regions with strong velocity gradients. 
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CRITICAL DYNAMICS FAR FROM EQUILIBRIUM 

Kyozi Kawasaki and Akira Onuki 
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Systems near critical points are known to be very sensitive to even a small 

amount of disturbances. Thus if the critical point is approached with external dis- 

turbances of fixed sizes that bring the system out of equilibrium, we encounter a 

variety of new problems of critical dynamics which cannot be handled by the usual 

linear response type treatments. Some examples of such a new kind of critical dy- 

namics will be described which include critical fluids under steady incompressible 

flow, nonlinear relaxation of the order parameter, kinetics of first order phase 

transitions near critical points, and the superconducting transition under electric 

field. 

i. Introduction 

During the past fifteen years we have witnessed a phenomenal growth of our 

understanding of both static and dynamic aspects of critical phenomena which culmi- 

nated in the introduction of renormalization group ideas i) We now understand the 

nature of singularities in thermodynamic properties at the critical point and the 

spatial and temporal behavior of fluctuations occurring in the equilibrium state. 

As far as the dynamics is concerned, however, much of the past studies have been 

limited to the problems where deviations from equilibrium are so small as to be 

treated with the linear response scheme 2) . On the other hand, the characterization 

of a critical point as a point of marginal stability suggests that the linear regime 

where the linear response theory is adequate is very limited, and is indeed more so 

as the critical point is approached more closely. This is illustrated by consider- 

ing the average order parameter m(t) when it started out with m(0) =m 0 for simple 

dynamical systems such as the TDGL model without conservation laws in the absence of 
2) 

a conjugate field and above T . There is then a simple scaling law 
c 
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m(t) = (AT) B f[(AT) ~z t, (AT)-$m0 ] (i.i) 

where AT = T-T c and z is the dynamic critical exponent. The linear regime is then 

limited to m0<< (AT) B where (i.i) can be linearized in m 0. Therefore, even when 

m 0 is fixed to some very small value, as AT tends to zero we will leave the linear 

regime at some stage. 

Thus there is a whole new field of critical dynamics where a small but finite 

deviation must be taken into accout *) and which only recently has started to be ex- 

plored. Here the types of problems one encounters will be much more diversified 

than the usual linear critical dynamics which is concerned with the linear regime. 

Thus it is clearly presumptuous at this stage to try to enumerate all the possible 

types of problems. On the other hand, by looking at the limited number of cases 

where detailed studies are now becoming available, one can nevertheless recognize 

the kinds of phenomena expected in this new field of critical dynamics. 

Here we wish to illustrate the situation by discussing several typical examples 

which we do not of course claim to exhaust all the types. 

2. Steady State Problems 

Here we will be concerned with systems in nonequilibrium steady states brought 

about by constant dissipative perturbations. 

2-1. Critical Fluid under Steady Incompressible Flow 

Consider a critical fluid subject to uniform shear flow with the velocity field 

=DY~x' ~x being a unit vector. Here one notices the existence of two character- 

istic times, namely, the inverse of the rate of shear D -I which is the distortion 

time by the flow and the decay time of critical fluctuations in the absence of shear 

Y = [16~3/kBT], where~ is the shear viscosity near equilibrium and ~= IAT/TcI-~0 

is the equilibrium correlation length. As one approaches the criticality with a 

fixed rate of shear one encounters a regime where DT exceeds unity and large scale 

critical fluctuations are expected to be greatly affected by the flow within their 

life times (Fig. i). Thus the problem is characterized by the relevent dimension- 

less parameter DT = (kc~) 3 which grows near the criticality where k c = 

(16~/kBT) I/3 D I/3. In this new regime, DT > i, typical critical fluctuations with 

size greater than k~ i acquire strongly anisotropic needle-like shapes extending in 

the direction of flow, while fluctuations with size smaller than k~ ~ are little 

affected by the flow because they dissipate thermally before the distortion mecha- 

nism by the flow becomes effective. The above-mentioned modification in the fluctu- 

ation spectrum drastically changes the character of critical singularity 3, 4,5) 

*) Here we exclude cases which can be treated by finite order power series expan- 
sion in deviations from equilibrium. 
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Fig. i 

t =0 t =D -I t >>D -I 

Time-development of a local disturbance with size greater than k -I 
C 

In the steady state the space-time correlation function of order parameter 

f l u c t u a t i o n s  s ( r , t )  s a t i s f i e s  t h e  r e l a t i o n  3) 

+ -+ -+ -> + ! -> 

<s(r,t)s(r', t )> = ' < s (r-r'-Dy' ex(t-t'), t-t ) s(0,0)> 

The equal time correlation function has the translational invariance in space. 

The invariance property is lost for t ~ t', however. This results in a Doppler 

shift broadening in dynamic light scattering as we shall see below 6) . 

Our starting model is the following fluctuating mode-coupled hydrodynamic 

( 2 . 1 )  

equation 

~s %0V2 6H0 + ÷ • ÷ ( sv )  + + 0 =-u(r) ~ s -  po V • ÷ ( 2 . 2 )  

3 ÷ ÷ ~ H 0  - -  
-~v = -Po(SV-~) +DOV2$ + $ (2.3) 

The first term of the right hand side of (2.2) represents the convection of the 

order parameter by the average flow. In the absence of this term, (2.2) and (2.3) 

are the stochastic fluid model familiar in critical dynamics 2) . Here s(r,t) and 

v(r,t) are the local order parameter and the (transverse) velocity field, respec- 

tively, and @ and ~ are the corresponding random forces of microscopic origin. 

%0 and ~0 are the bare kinetic coefficients. P0 is the mode coupling strength 

which is usually set equal to i. H 0 is the usual Wilson Hamiltonian plus the 

kinetic energy of flow of the form 

i 2 i u0 .e s 4 i ~T $2 ] (2.4) H 0 = Id~[~(T+T0c) S + ~(~s) 2 + ~A - hs + 

where T is proportional to T-T c, % is the upper cut-off wave number, h is the chemi- 

cal potential conjugate to the order parameter and p is the mass density of fluid. 

We assume the familiar fluctuation-dissipation relations between O, ~ and 10' ~0' 

which may be expected to be hardly affected by the shear flow since the fluctuations 

involved are of microscopic nature. 

First we consider a linearized version of (2.2)-(2.4) where P0' u0 and T0C are 

set equal to zero. This provides a good approximation above four dimensions. 
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Peculiar effects of shear are already apparent in this case. The variables s and 

are now uncoupled and the shear flow only affects the former. (The steady state 

variance of the velocity field is almost unchanged for realistic values of D3)). 

The variance C~=<Is~12> taken on the critical isochore, T~0 and h=0, which 

will be denoted as C~ O) in this case, obeys the equation 

_ i k 4 $ C~0) k 2 [k2 (k2+~)  ~ c k x - ~ - ]  ( 2 . 5 )  
Y 

where  k c ~ (D/X0)1 /4 .  Th i s  e q u a t i o n  can b e  s o l v e d  u n d e r  t h e  c o n d i t i o n  tha t  C~ 0) i s  

p o s i t i v e  d e f i n i t e  f o r  any ~ .  The e f f e c t  o f  s h e a r  i s  i m p o r t a n t  o n l y  i n  t h e  c a s e  o f  
1/2 

s t rong  s h e a r  k > T and i n  t h e  s m a l l  wave number r e g i o n  k<  k . T h e r e f o r e  we 
C e 

consider this case in the following. (For k <T I/2 or for k>k the effect of 
C C 

shear is small and the variance is almost unchanged from the Ornstein-Zernike form). 

The variance C~ U)'~ becomes anisotropic and has different functional forms in several 

domains of small k (< kc). Its overall behavior can be well represented by the 

following approximate expression: 

k8/5 2/5 k 2 ]-i 
C O) = [ T+ c c Ikx I + (2.6) 

where c= (5/2) 2/5 F(3/5) -I =0.97. Fourier-transforming to the coordinate space we 

obtain for g(~) K<~s(~)6s(r=0)> with as Ks-<s> the following behavior at T=0 in 

strong shear regime (here g is again denoted by g(0)): 

g(O)(7 ) k d-2 * ÷ 
= c g ( k c r )  ( 2 . 7 )  

with 

IR£I - (d+2) f o r  [R£I>>[X[ 1/5 and 1 

g (R) ~ { (2+8) 

IX] - ( d + 2 ) / 5  for I~Ll<<lxl 1/5, Ixl>> 1 

where d(>2) is the dimensionality of space, and X and R£ are the components of 

parallel and perpendicular to the direction of flow. This peculiar behavior is due 

to the fact that fluctuations can be transported for a long distance without much 

decay by the shear flow along the x-direction in the region IR±I>>IXI I/5. 

Let us now turn to the complete nonlinear model (2.2)-(2.4), where we are 

faced with tough problems of critical phenomena. The easiest way to deal with 

them is to try an E-expansion where E = 4-d and we know from the usual treatment of 

critical phenomena i, 2) that P0 ~ gl/2 and u0, T0c ~ E. The shear flow does not en- 

hance critical fluctuations and hence the nonlinear couplings among fluctuations can 

be neglected above four dimensions as in the usual cases near equilibrium. The rate 

of shear D is a new relevent parameter and can be regarded as a kind of a new ther- 



modynamic variable. Various physical quantities such as the variance of critical 

fluctuations and the equation of state depends on D strongly for kc~ > 1 . Not enough 

attention has been paid to nonlinear effects of dissipative disturbances near 

the critical point, although much work has been done on nonlinear effects of static 

perturbations added to the Wilson Hamiltonian. The introduction of nonlinearities 

brings in coupling between order parameter and velocity field fluctuations that lead 

to renormalizations of %0 and ~n" Technically, the procedure is similar to the 

usual renormalization group (RG)~ treatment of critical dynamics i, 2) except for one 

important difference. In the usual RG treatment the recursion relations for the 

static parameters such as u and T do not involve dynamic parameters like % and 

where subscripts 0 are omitted to denote renormalized quantities. Namely, static 

and dynamic aspects of the problem are separable. This is not so in our problem far 

from equilibrium since the steady nonequilibrium state is determined by both static 

and dynamic parameters. This produces some complications but no unsurmountable 

difficulty. The main results in the case of strong shear to first order in E are 

summarized below: 

(I) Tbe critical temperature T (D) is shifted downward below its equilibrium value 
C 

T (0) as 
C 

Tc(D) = [i - 0.0832gTs(D)] Tc(0) (2.9) 

where T (D) is the cross-over reduced temperature at which kc~ = i holds and is 
S 

given by (kc/A) 2-s/3 to order E. 

(2) The equation of state for kc~ >i is of the mean field functional form but 

strongly depends on k : 
C 

i ,m2k S (2.10) h/m = (T-Tc(D))/Tc(0) • A 2-~/3k~/3 + ~u c 

where h is the chemical potential and m the average order parameter. This re- 

lation indicates that the critical exponents B and y are given by the mean field 

values 1/2 and i, respectively. 

(3) The critical divergence of the kinetic coefficients % and ~ are suppressed for 

kc~ > i as 

= %*(kc/A)-18E/19 (2.11) 

q = ~*(kc/A)-~/19 (2.12) 

where %* and q* are the critical amplitudes for diverging transport coefficients 

near equilibrium. Here we have omitted corrections to %* and q* of order E. 

(4) The variance for k < k is given by 
C 

C~ = kc2C (k/k c, i/kc~ s) (2.13) 
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where 

~s = [T-Tc(D)]-I/2Tc(0)I/2(kc/A)-E/6 A-I (2.14) 

is the new correlation length of critical fluctuations in the direction perpen- 

dicular to the flow. The scaling function C (~,~) is well represented by the 

following : 

* ÷ - ] ~x [ 2/5 C (i, i/kc~ s) = [~s 2 k-2c + c + 1-i for £<i (2.15) 
~2 

The Fourier transform of (2.15) to the coordinate space reflects the spatial ex- 

tension of critical fluctuations; they are elongated along the direction of flow 

with the width Ss in the directions perpendicular to the flow and with the 
4 5 

length kc~ s in the direction of flow. 
-> 

(5) The structure function of light scattering I(k,~0) which is the Fourier transform 
-+ -~! 

of the space-time correlation function <~s(r,t) 6s(r , t')> in the scattering 

volume is written as 

I(~,~) = C~ S~(~) (2.16) 

The line space function S depends strongly on the direction of ~ and on the 

size of the scattering volume in contrast to the usual cases without flow. S is 

written using (2.1) as 

ey/2 
i 

S~(~) = ~-- f dyG~(~-Dk y) (2.17) 
x y-L /2 

Y 

where Ly is the length of the scattering volume along the y-axis and G~(~) is 

the line shape function in the limit of small scattering volume. The peak width 

of G~(~), denoted by A~, is strongly anisotropic and G~(~) is not Lorentzian in 

wide regions of ~ corresponding to the distortion of fluctuations by the shear 

flow. S~(~) coincides with G~(~) only for small k x such that DlkxILy < A~, as 

can be seen from (2.17). For DlkxlLy>A~ the line shape is broadened as 

2~/2DLy Ikxl for I~I <DLylkxl 

S~(~) ~ { (2.18) 

0 otherwise 

This can be explained as a Doppler shift broadening due to velocity gradients 

which will be readily observable experimentally. 

These results demonstrate that the strong anisotropy of critical fluctuations as 

indicated by (2.15) suppresses the effects of critical fluctuations on various 

quantities like the transport coefficients. Namely, for k ~ > 1 and k < k the 
c c 

variance is dependent only on k in most regions of ~ : 
x 
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C~ = k~ 8/5 Ikx I-2/5 for k41kxlc >k5 and ~-5s " (2.19) 

The Fourier transform of a function of k almost independent of ky and k z is sharply 

peaked on the x-axis. Therefore, (2.19) shows that the critical fluctuations with 

sizes greater than k -I are elongated in the direction of flow. One can also show 
e 

that this weakening of the critical singularity reduces the critical dimensionality 

from 4 to 12/5 = 2.4 . This can be seen by considering the fluctuation contribution 

to 4. There one encounters integrals like 

1 % ~ 7" d (d) ~ C~ (2.20) 

By putting C+q =k~8/5 - -2/5 a x the contribution from q< kc becomes 

k k 
c qd-3 -2/5 c d-17/5 

% ~ f dq Iqx] ~ f dqq , (2.21) 
0 0 

which diverges logarithmically at d = d = 12/5. 
c 

It is interesting to compare the suppression effects found here with an analo- 

gous situation found in anisotropic Ising-like ferromagnets with dipolar interac- 
x -+ tions 7" There the Fourier transform of the spin correlation function <s (r) sX(o)> 

takes the form 

<sXs_k > = [~-2 + k 2 + g(kx/k)2]-I (2.22) 

where g measures the strength of dipolar interaction. Here wave vectors of the 

critical fluctuations giving rise to the dominant renormalization contributions are 

restricted to be within narrow regions almost perpendicular to the x-axis ( namely, 

Ikx/k I must be small). In this way the number of important fluctuations is de- 

creased and the critical dimensionality is reduced from 4 to 3. In both the pro- 

blems critical fluctuations are elongated along a particular direction to attain the 

lengths g-i/2 ~2 and k 4 ~5 for the cases of dipolar interaction and strong shear 
es 

flow, respectively. 

The levelling-off of initially diverging shear viscosity to a finite value in 

the presence of a finite shear flow was noted sometime ago by Oxtoby 8) , which, in 

fact, is an example of non-Newtonian flow in critical fluidS. There is a long 

history of the study of this problem starting with Botch and Fixman 9) in 1965 who 

predicted rather large non-Newtonian effects reflecting the current view advocating 

strong critical divergence of shear viscosity. Oxtoby made an extensive use of the 

method developed in Ref. i0 and concluded that 

~(D)/N(D=O) -~ i - 8 ~n( 'N~3D (strong shear regime) (2.23) 
4572 0.45 ~T ) 



where $ in the right hand side will cancel with that in n(D=0) as ~ +~ . The over- 

all behavior of A ~ I-N(O)/N(D=O) is shown in Fig. 2 as a function of % = n ~3D/kBT 

0.05 / o 

&(),) 0.04 / o ,, 

0.03 a / 

002 t ~, J , ,  

O l O 0 ~ [ O ,  = , I [[ I I I I l l l ' I  I I 
[ I0 

Fig. 2 The shear dependent part of viscosity as a function of the 
dimensionless rate of shear. The solid line is the 
theoretical prediction. After Ref. 8. 

together with some experimental values of capillary viscometers. Recent theory of 

critical divergence of shear viscosity near equilibrium critical point which pre- 
=) 

dicts power law singularity suggests that (2.23) may well be replaced by 

n~3D - 8 / 4 5 ~  2 
n(D) /n(D=0) ~ (0.45~T) (2.24) 

although this is not explicitly demonstrated yet. However, the non-Newtonian aspect 

of the shear flow is rather weak and is difficult to make precise measurements. 

Our model can be extended to more general flow fields as follows. Assuming 

that the flow is incompressible and its velocity gradients are constant over the 

system one can rewrite the velocity field u (~) in (2.2) as 

d ÷(~ u ) = ~ - r  ÷ w i t h  Z D. .  = 0 , ( 2 . 2 5 )  
l l  

i = l  

w h e r e  ~ =  { D i j }  i s  a t e n s o r  w i t h  t h e  d i m e n s i o n  o f  f r e q u e n c y .  I f  D i s  c o n s t a n t  

o v e r  t h e  s y s t e m  t h e  e q u a l  t i m e  c o r r e l a t i o n  f u n c t i o n  h a s  t h e  t r a n s l a t i o n a l  i n v a r i a n c e  

i n  s p a c e  and t h e  s t e a d y  s t a t e  v a r i a n c e  on t h e  c r i t i c a l  i s o c h o r e  can  be  o b t a i n e d  i n  

t h e  l i n e a r  a p p r o x i m a t i o n  i n  t h e  fo rm 

~ t 
C~ 0) = I d t e x p [ - /  d ~ X 0 { z ~ ( ~ ) 2 + ~ ( ~ } ]  X0~(t) 2 , (2.26) 

0 0 

w h e r e  t h e  t i m e - d e p e n d e n t  wave v e c t o r  ~ ( t )  i s  d e f i n e d  by  
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~(t) = exp [~tD r ] 1  +-+ .~ , (2.27) 

~T being the transposed matrix of D . Various possible flows can be classified 

into two groups as follows : 
+-+ 

(i) One is the case where at least one eigenvalue of D is zero or pure imaginary. 
+-+ 

This condition in three dimensions reduces to det D = O. For small wave vectors 

which are the corresponding eigenvectors of ~T or their linear combinations 

C~ 0)- grows as r ÷ 0 and instability occurs for T < 0. Below four dimensions 

the critical temperature is lowered below its equilibrium value and forms a 
++ 

critical surface parametrized by the independent elements of D . 

(2) The second is the case where all real parts of the eigenvalues of D are non- 

vanishing. Here ~(t), (2.27), always grows or decays exponentially in time and 

C~ 0)- remains finite even if T is pushed to negative values. This means that 

fluctuations are suppressed in such a way that no linear instability occurs. 

This might imply that the phase transition becomes first order. Analogous 

situations can be found in superconducting systems near the transition point 

under electric field, as will be discussed below 13) 

The nature of critical singularity appears to depend on the types of flow and 

a simple shear flow constitutes only a special case. There is even a possibility 

of non-universal behavior. Full analysis of this interesting problem is currently 

under way. It is interesting to note that sensitive dependence of polymer conforma- 

tions in dilute solutions on the types of flow was also discussed by de Gennes II) . 

Similar circumstances seem to exist in two-dimensional fluids where the velocity 

field correlation function decays as r -2/3 in a simple shear flow, for example 12) 

2-2. Superconducting Transition under Electric Field 

Another problem of considerable interest dealing with a nonequilibrium steady 

state near the critical point is the superconducting transition under a finite elec- 

tric field 13, 14) Here one is interested in the "equation of state" relating the 

temperature, the electric field E and the current density J. Near the transition 

the equation of state may take the following scaling form 15) 

E = JX X(AT/J%) (2.28) 

with the critical exponents x and % which are the analogs of ~ and I/B, respectively. 

The scaling function X(z) reduces to a finite number as z + 0 and behaves as z ~ as 

z ÷~. The requirement that E = J as AT/JL~ imposes the condition 

x - ~% = i (2.29) 

A mean field type theory based on the TDGL equation in which ~ is replaced by 

~-(2ie~/c)~, ~being the vector potential due to the electric field, yields the 
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mean field exponents x =3, p =i and I=2 for films whereas the latest experiment for 

NbN films 15) indicates that p=3.6~4.2, x=2.8~3.2, I=0.4~ 0.6. The value x=3 

is in agreement with other experiments but the values of ~ ~i or p~ 2 are also 

reported 16) . The problem discussed here has one point in common to the critical 

fluid under incompressible flow: dissipative disturbances substantially suppress 

critical fluctuations. 

3. Transient Phenomena 

Consider a system in thermal equilibrium near a critical point. Suppose we 

suddenly change some of the thermodynamic variables like temperature and pressure 

to other values still in the neighborhood of the critical point. Although amounts 

of change can be very minute, this can give rise to rather drastic effects if it 

takes place sufficiently near the criticality. One can also imagine, for instance, 

periodic variations of thermodynamic variables although we shall here limit ourselves 

to sudden changes. 

We now divide transient phenomena into those involving only a single phase, and 

those where two coexisting phases in the ordered state are involved. 

3-1. Nonlinear Order Parameter Relaxation 

Here we take up nonlinear relaxation of the order parameter which was briefly 

described in Sec. i. Much attention has been paid to the nonlinear relaxation of 

the spatially uniform average order parameter m(t) or the total energy after sudden 

removal of magnetic field or temperature change for systems described by the time- 

dependent Ginzburg-Landau (TDGL) equation without the consevation law or the single- 

spin-flip kinetic Ising models which are believed to exhibit the same dynamic criti- 

cal behavior 17) The relaxation time of the overall nonlinear relaxation process 

may be defined by an expression such as 17) 

T = I dtm(t) /m(0) (3.i) 
m 

0 

As T is approached, the critical slowing-down takes place, so that 
C 

-A 
T = (AT) m (3.2) 
m 

. _  . 18 )  
If, as AT approaches zero, the initial magnetic field is also reduced to Nln~aln 

]m(0) I ~const.(AT) ~ the scaling law (i.i) tells us that (also note that m(t)= m(0) 

for very small m(0)) 

A = A (~) = ~z (3.3) 
m m 

On the other hand, if m(0) is kept fixed as AT÷0, we have a different situation. 

The initial state where Im(0) I >> const.(AT) B can be considered to be relatively far 
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from the critical point. Thus the initial relaxation process takes place within a 

relatively short time until m(t) decreases towards smaller values near the criti- 

cal point, after that the system will forget its initial memory, the value of m(0) 19) . 

If this initial "noncritical" relaxation process does not contribute substantially 
co (AT)B_~z to I dtm(t), it behaves as . Hence we have 19, 20) 
0 

A = A (n~) = ~z - 6 (3.4) 
m m 

Thus 

A (n~) = A (%) - ~ (3.5) 
m m 

a (%) and A (n%) have been referred to as linear and nonlinear relaxation time expo- 
m m 

tents, respectively, and (3.5) has been first explicitly written down by Racz 19) al- 

though Suzuki 17) had earlier noticed possible distinction between the two regimes. 

One can extend the argument given here to the relaxation of variables A other than 

the order parameter and write down the exponent relations between linear and non- 

linear relaxation time exponents A~ ~) and A~ n~) , respectively, as follows20); 

AA(n~) = AA(~) - 6 A (3.6) 

where 6 A is the exponent defined by 

A(T) - A(T c) = 
6 A 

const. (AT) (3.7) 

In particular, for the internal energy E we have ~E = i-~ . 

Attempts have been made to verify the relations (3.5) and (3.6) which were ob- 

tained above on the heuristic grounds, and to explore how generally valid are these 

relations from various directions: (i) examine simple systems such as the one-dimen- 

sional kinetic Ising model 21) and the dynamical spherical model 22) , (ii) use approxi- 

mate models such as the mean field 19) one and the dynamical droplet model 18) (iii) 

the series expansion method 21' 23) (iv) Monte-Carlo simulation for a kinetic Ising 

model 18' 24) (v) experimental verification 24!).- These results seem to indicate that 

(3.5) and (3.6) with A = E are valid for purely dissipative systems, and not neces- 

sarily for non-dissipative cases. For instance, the best estimates by series method 

for the two-dimensional Ising model are a (%)= 2.125±0.01 and a (n%)= 2.00± 0.04 21J." 
m m 

Further, one would like to know the actual scaling function f of (i.i) not just 

the exponents~the A's. For this purpose one needs to know the equation of motion 

satisfied by m(t). Such an equation was obtained for the time-dependent Ginzburg 

Landau (TDGL) model [eqs. (2.2) and (2.4) without D, Po and V 2 in front of ~H0/~s ] 

near the four dimension up to O(g) which is nonlinear in m(t) and contains memory 

effects 25) . This takes the following form: 
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where 

= -F(~) +~2 ~(£) f ds~ -2 {exp[-2y(t)s] -exp[-2 f d~'~(£-$')] } 
~£ o o 

(3.8) 

F(~) 

8 2 )2 
y(£) = 1 +-7 E~n(~ (3.9) 

8~ 2 ^2 g 8~ 2 8~2 em 2) - i] } (3.10) ~n{l +--~-em +~(i+-~-- gm2)[ ~n(l+~ - 

and ~ and £ are the appropriately scaled order parameter and the time proportional 

to m/(Ar) ~ and (AT) z~t, respectively. 

It is important to note that the values of A (nE) do not necessarily reflect the 

time scale of dynamical processes occurring in the nonlinear regime. For instance, 

the mean field solution in the nonlinear regime still contains the time in the com- 

bination (AT) z~ t. Rather, A (n~) reflects the particular definition of the non- 

linear relaxation time like (3.1) especially the presence of m(0) in the denominator. 
26) 

Indeed if one defines the nonlinear relaxation time by 

co 

T' = [ f dttm(t)/m(0) ]1/2 (3.11) 
m 

0 

(3.5) will be changed to 27) 

A(n%) ' = A(£) i 
m m - ~ 8 • (3.12) 

3-2. Kinetics of First Order Phase Transition 

Here we would like to take up the kinetics of first order phase transitions that 

take place near critical points. Far from the critical point kinetics of first order 

phase transitions involves fluctuations of microscopic sizes. That is, the nuclea- 

tion process can be started by critical nuclei with radii of, say, a few A 28) Also 

a spinedal decomposition begins with fluctuations with wave lengths of, say, 50 A 29) 

There one often has to worry about microscopic details which can depend on individual 

systems under consideration that enter, for example, the calculation of the statisti- 

cal weight of a critical nucleus. On the other hand, near the critical point the 

smallest characteristic length is ~, the correlation length of critical fluctuations, 

and the smallest characteristic time is the time T~ that governs the order parameter 

dynamics, both of which are enormouly large on microscopic scales. One thus expects 

nice features that characterize studies of critical phenomena like scaling, univer- 

sality, etc. In particular, the continuum models such as the TDGL and other con- 

tinuum stochastic model systems described earlier retain their validity. 

Here we have a unique opportunity of attacking the difficult and complex pro- 

blems of the kinetics of first order phase transitions in their purest forms without 
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being bothered by inessential details. In the following we briefly review this pro- 

mising area with plenty of room for further exploration. 

3.2.11 Nucleation 

Transformation of phase by nucleation is a very old subject traced back to 

Maxwel, Gibbs and Thomson. Quantitative treatments are mostly based on the classical 

theory of Becker and Doring in 1935 as elaborated by Frenkel and others. This theory 

predicts the following homogeneous nucleation rate per unit volume I for a super- 
28-30). n 

saturated vapor 

In = Jnexp(-W/kBT) (3.13) 

where J is the "trial frequency" and is a very large number, and W is the free 
n 

energy of a critical nucleus given by 

16 ~3 
W 2 (3.14) 

3(6P) 

Here ~P is the pressure difference of new and old phases, and u is the surface ten- 

sion. This classical theory and its modifications have been successfully applied to 
30) 

various nucleation phenomena . 

On the other hand, since around 1962 it has been realized that things do not 
31) 

always go well with the classical theory Indeed we now know that as one ap- 

proaches the critical temperature, the classical theory predictsnucleation rates 

which are rather too large. That is, the supersaturated vapor is much more stable 

than predicted by the classical theory. The detailed experimental study of super- 

cooling near the critical point has been performed recently by Huang et ai.32) and 

the result is shown in Fig. 3. The classical theory (3.14) yields with O 

(AT) 2(28+%)/3 and 6P = ~T(AT)8(6+i)-i, 6T being the amount of supercooling and with 

the scaling relation y= 8(6-i), the following near the critical point: 

W/kBT = -w "(AT/~T) 2 (3.15) 

The finite coefficient w is estimated to be 0.7 for CO 2. In Fig. 3 is indicated by 

the dashed line the prediction of the classical theory for the scaled supercooling 

AT/~T for nucleation that corresponds to W/kBT =70 . The observed supercooling 

reach close to 3 times the prediction for AT/T= 10 -3. The increased supercooling 

then amounts to an increase of the nucleation rate by roughly 1028 times! Consider- 

ations of inhomogeneous nucleation and the translation-rotation degrees of freedom 

of the critical muclei 30) tend to make the situation worse. 

There have been alternative theoretical approaches to the nucleation. Cahn and 

Hilliard used the Landau-Ginzburg type free energy functional to obtain the droplet 

free energy which turned out to be smaller than that of the classical theory 29) 
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Fig. 3 Supercooling in CO 2. The dashed line is the prediction 

of the classical theory due to Becker and DSring. 

After Ref. 32. 

This theory is improved by Sarkies and Franke133) by adopting the free energy func- 

tion of Fisk and Widom 34) which is more appropriate near the critical point,obtaining 

the droplet free energy which becomes distinctly larger than that of Cahn and 

Hilliard near the critical point but still appears to be short of explaining the 

large discrepancies with the experiments. Attempts have been made to use Fisher's 

droplet model, which, however, predicts a much larger nucleation rate than the clas- 

sical theory 35). Binder proposed to take into account the process of growth of 

supercritical nuclei after nucleation in order to explain the experimental results 

28, 35) Mou and Lovett 36) constructed a theory where not only the droplet radius 

but also its time derivative enter as independent dynamical variables. At this 

moment the problem of nucleation near the critical point is full of controversy with- 

out any convincing explanation of the large gap between theory and experiments. 

In connection with the nucleation problem, it is worth pointing out a possible 

usefulness of modern ideas of critical phenomena l) in understanding the nature of 

metastable states. For instance the equation of state for the case with a scalar 

order parameter obtained by the usual E-expansion 37) can be smoothly continued into 

the metastable region of the thermodynamic parameter up to the van der Waals spinodal. 

We conjecture this to be true for any finite order E-expansion. This, then, will 

provide a natural way of obtaining the equation of state in metastable states, which 

complements the equation of state of a supersaturated vapor obtained by excluding 

clusters qVer a certain finite size 30) . Whatever there are the peculiarities associat- 

ed with metastable states such as finite life times should then come from infinite 
38) 

order terms in the expansion. Indeed the recent developments o~ large order pertur- 

bation theory are closely related to the study of metastable states in statistical 

mechanics. 

3.2.2 Spinodal decomposition 

Previously, kinetics of phase separation that takes place when a system is 
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suddenly brought into the region of unstable thermodynamic parameters have been 
29, 39) 

studied in such systems as alloys and glasses with small diffusion constants 

In ordinary fluids, phase separation in unstable states takes place almost instantly 

because of high mobility of fluid molecules. On the other hand, in the immediate 

vicinity of a critical point, there occurs an enormous reduction of the diffusion 

constant which becomes proportional to (AT) ~ . Thus kinetics of phase separation 

becomes experimentally accessible 40' 41, 42) 

In some sense the spinodal decomposition (SD) is easier to treat theoretically 

as compared to the nucleation because the former deals with instability against 

infinitesimal disturbances whereas a finite amplitude disturbance (critical nucleus) 

is needed to trigger a nucleation. Thus the earliest theory of SD is formulated as 

a problem of linear stability 29' 39) Thus the initial thermal fluctuations are 

amplified exponentially with time. That is, with 

with 

Ik(t) exp [~t] Ik(0) 

Ik(t) ~<ISk(t)]2> we have 

(3.16) 

P'k = 2%0k2 ( IT! - k2) (3.17) 

Here we have started from the stochastic model (2.2) and (2.4) without D, P0' (the 

TDGL model with conserved order parameter) to represent the order parameter dynamics 

of a spinodally decomposing system below T c (T< 0) and have linearized in fluctuation 

amplitudes. This linear theory of SD is useful only to provide a very crude idea of 

what SD is. The fact is that to author's knowledge there appears to be no single 

example (actual or computer experiments) which establishes the existence of a regime 

described by the linear theory 43) . It is obvious that the linear theory gets pro- 

gressively worse as the time goes on since amplitudes of fluctuations are predicted 

to grow very fast. Thus, there now exist many theoretical attempts to take into 

account the nonlinearities of the problem 44)-46) . In case of solids such a non- 

linearity is provided by the u 0 term in (2.4). The problem of similar nature occurs 

also for the TDGL model without conservation laws which applies to the kinetics of 

order-disorder transitions in alloys, structual phase transitions, strongly aniso- 

tropic magnets, etcJ 7) Although this sort of nonlinear continuum problems is famil- 

iar in statistical physics and quantum field theory, there is a special difficulty 

here. The nonlinearity is essential here in bringing a system out of a uniform 

single phase to states with two coexisting phases (the so-called double peak struc- 

ture), the very processes that we want to describe. Thus the standard techniques 

such as the random phase or decoupling approximation schemes which presuppose the 

validity of a Gaussian form for the probability distribution functional of the order 

parameter do not make sense. 

As an example of the approaches which go beyond such decoupling-type schemes we 
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mention the work of Langer, Baron and Miller (LBM) 45) for the TDGL model with a con- 

served scalar order parameter which appear to reproduce the time development of 

fluctuation spectra obtained by Monte Carlo simulations of the spin-exchange kinetic 

Ising model 48) reasonably well despite inadequacies of the method that have been 

noted recently 46' 49) 

The crux of the method resides in the simple ansatz expressing the two-point 

probability distribution function of the local order parameter in terms of the one- 

point distribution function. 

On the other hand the results do not agree with the observed behavior of the 

fluctuation spectra of critical fluid mixtures where good experimental data free 

from secondary complications are now becoming available. Here however, hydrodynamic 

effects have to be properly taken into account. Several years ago 50) the stochastic 

fluid model which includes such effects was proposed. The model is expressed by a 

Fokker-Planck type equation for the order parameter distribution functional P({s},t) 

of the form, 

-~t P({s}, t) Z {s}P({s}, t) (3.18) 

where 

{s} = ~0 + ~hd (3.19) 

+ ~ 6 6H 0 
~0 : -%0 S d r ~  V2[ ~ + 6--~] (3.20) 

÷ ÷ ÷ 6H 0 
~hd = 2// d~id~ 2 --~is(~ I) "T(rl-r 2) "~2s(r2)[ 6 + ] 

6S(~l) ~s(~ ) 6s(~ ) 

(3.21) 

÷ 1 (! /f÷÷ 
T(r) = ~-~ r + rr ) . (3.22) 

r 

hd expresses the long-range hydrodynamic interaction between distant order para- 

meter fluctuations mediated by velocity field fluctuations, which is familiar in 

polymer solutions. In the absence of ~hd' (3.18) reduces to the TDGL model treated 

by LBM. Near equilibrium the hydrodynamic term produces the now familiar renormali- 

zation of the transport coefficient %02) . This horribly-looking model equation can 

be handled if we note that the nonlinearity contained in (3.20) is short-ranged 

(point-like) whereas that of (3.21) is long-ranged. Hence we regard the LBM result 

for the solid model without ~hd as a reference and study the effects of ~hd by 

applying the random-phase-approximation which should be valid for long range inter- 

actions. The results of such a treatment 51) are shown in Figs. 4 and 5 together with 

experimental results 41) . Although some of the excellent agreements obtained may very 
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well be fortuitous, we believe that this comparison establishes the importance of 

taking hydrodynamic effects into consideration in spinodal decomposition of critical 

fluids. At late stages much of the local velocity fluctuations can be incorporated 

into renormalization of transport coefficient %0' as in the nucleation problem 52). 

However, the situation at the late stage 42) appears to be too complicated to be pro- 

perly understood at this moment where gravitational effects and various hydrodynamic 

instabilities may take important parts. 

4. Concluding Remarks 

In the preceding sections we have presented several concrete examples that dem- 

onstrate a wide variety of types of problems pertaining to critical dynamics far 

from equilibrium. These examples, however, are very limited and we have merely 

scratched the rim of this potentially rich field. 

We have not touched upon various important hydrodynamic problems of critical 

fluids 53) and superfluids near the critical point 54) . There is also an interesting 

question of what happens if the liquid He 4 is suddenly quenched below criticality 55) 

The same question can be asked for any system having broken continuous symmetry be- 

low criticality. 

Finally there is a growing interest in critical phenomena that are expected to 

occur near points of instability far from equilibriumD~ )-" We have not mentioned them 

here since we are concerned exclusively with critical phenomena in its more tradi- 

tional sense. The whole purpose of this brief review is to call attention to the 

existence of a poorly explored area of critical dynamics even near thermodynamic 

critical points. 
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Siggia where he analyzes the late stage spinodal decomposition of critical liquid 

mixtures. For a quench at the critical concentration he predicts a crossover 

t I/3 - = t when kZ 1 reaches the Lifshitz-Slyozov type law km I- to km 1 from 

(kBT/O) I/2 , o being the surface tension. This crossover length,mhowever, becomes 

roughly equal to ~ since ~kBT/~ 2 for d=3. 
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EXPERImeNTAL ASPECTS OF TRANSITION PHENOMENA IN QUANTUM OPTICS 

F.T. Arecchi 

Universit~ di Firenze and Istituto Nazionale di Ottica, Firenze 

ABSTRACT 

Phase transitions in equilibrium systems are the result of a competition between the 

interparticleenergyJ and the thermal energy kBT which introduces disorder. In quan- 

tum optics, even when interparticle interactions are negligible as in a very dilute 

gas, there may be particle correlations due to the common radiation field. The trans- 

ition from disorder to order consists in a passage from a regime where the atoms e- 

mit independently from one another, to a regime where the atoms emit in a strongly 

correlated way. It depends on a "cooperation number" C which is proportional to the 

atomic density. In a "pumped" system, as the density of active atoms is increased, 

the laser threshold is reached for C=I and the coherent e.m. intensity is proportio- 

nal to C-I. 

The laser threshold and the optical bistability are discussed as examples, respect- 

ively, of 2nd and ist order phase transitions in quantum optics. 

By photon statistics methods the statistical features of these phenomena can be mea- 

sured with high accuracy. 

Furthermore, in nonequilibrium optical systems it has been possible to study for the 

first time the transient build-up of an ordered state by a rapid passage through an 

instability. These transients are characterized by large fluctuations which display 

a scaling behaviour. 
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I-INTRODUCTION 

In the past fifteen years, the introduction of the photon statistics method (for the 

theory see Ref.l, for a description of experimental aspects see Ref.2) has allowed a 

3-7 
careful investigation of quantum optical devices, such as the laser oscillators 

From the first experiments 2the threshold point, where the gain due to the external 

excitation prevails over the internal losses, displayed the same features of a con- 

tinuous phase transition in an equilibrium system (large increase in fluctuations, 

8 
slowing down). While the Landau mean field model was showing its weakness in giv- 

ing the right critical exponents for most phase transitions 9, that model is suffi- 

cient to explain all statistical features of the laser threshold, hence motivating 

the development of a phase transition analogy, as already hinted for other nonequi- 

I0, ii 12, 13 
librium systems , for the laser threshold 

Similarly, evidence of discontinuous jumps and hysteresis effects in a laser with a 

14, 15 
saturable absorber suggested an analysis of the instability of such a device 

16, 17 
as a first order phase transition . Recently, injecting a laser field into an 

interferometer filled with absorbing atoms, saturations of the susceptibility has 

given rise to a discontinuous instability as in the previous case. Evidence of a 

hysteresis cycle suggests a region of coexistence of two stable points, hence the 

name of optical bistability 18. The corresponding theory, either when the instability 

19 20 
is due to the absorptive or the dispersive part of the atomic susceptibility, 

shows the characters of a Ist order phase transition. 

Nonequilibrium systems can be driven through the instability point by a rapid pas- 

sage, that is, at a rate larger than the local relaxation rate of steady state fluc- 

21 
tuations. Such a transient situation was first observed for the laser instability 

22 
A phenomenological theory has shown the universality character of the anomalous 

transient fluctuations, which can be represented in terms of a scaling parameter. 

23, 24 
The general theory of these anomalous fluctuations has later been developed 

Of course, since transient phenomena are not invariant for time translation, there 

is no equivalent in equilibrium systems. The superfluorescence, that is the sponta- 

neous cooperative decay of N atoms all prepared in their excited state in the ab - 

sence of a classical field to drive them 25, 26, 27, is a transient collective be- 

havi0ur displaying a threshold. In such a case there is no stationary equivalent. 

The fluctuation enhancement here is only a theoretical conjecture 26, 24, since the 

28, 29, 30 
experiments done so far give only single shot shapes but not statistical 

fluctuations. The above introductory remarks are summarized in Table I. 
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31, 32 33 
Some recent investigations, theoretical and experimental deal with the 

role of mode-mode coupling at the onset of the instability, either in steady state 

31, 33 or in the transient 33. A deeper investigation of these problems could give 

interesting analogies with the same phenomena in hydrodynamic instabilities. 

This contribution is organized as follows. 

In Sec. 2 we discuss cooperation in radiative interactions. 

In Sec. 3 we give a statistical phenomenological description of quantum optical 

34 
phase transitions 

In Sec. 4 we review photon statistics as a tool for measuring fluctuations in quan- 

tum optical systems. 

In Sec. 5 we report the body of experimental data on the transition phenomena in 

quantum optics. 

TABLE I 

PHASE TRANSITIONS IN QUANTID{ OPTICS 

2nd 

ord. 

Ist 

ord. 

transient 

Thermal equilibrium 

- order/disorder 

- para-ferromagnetic 

(H=O) 

- para-ferromagnetic 

(HtO) 

- liquid gas 

Quantum Optics 

laser threshold 

- laser plus saturable 

absorber 

- optical bistability 

- laser transient 

- superfluorescence 
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2-COOPERATION AND PHASE TRANSITION IN RADIATIVE INTERACTIONS 

A gas of N non-interacting particles in contact with a thermal reservoir is a single- 

phase system. If however there is a nonzero interparticle energy J, such as the inter- 

molecular potential in a real gas or the exchange energy in a magnetic spin system, 

as soon as J prevails over the fluctuation energy kBT, there is a transition from a 

disordered phase characterized by almost free particles to an ordered phase charac- 

terized by a collective or cooperative behaviour. 

9 
A convenient classification of phase transitions is that of Ehrenfest depending on 

which thermal derivative of the free energy F is discontinuous at the transition 

point. 

In some instances, when the interparticle interactions are long-range compared to 

the interpartiele distance, the system is well described by a free energy which is a 

series expansion of an order parameter q. 

If, by symmetry arguments, the series has only even terms such as 

F=U- TS = F + ~ Z ~ 4 o ~ ~ ~ ~.. ~ (2.1) 

where F is the value at the transition temperature T = T , 
o c 

= a (T - T ) , with ~-70 , and ~> O , 
c 

then it is an easy matter to show that at T = T , where ~ = O 
c 

tinuous (2nd order transition). 

35 
If an odd term has to be included 

F-F = ~ q + ~ z ~_~ 
o ~-~ ~ --~ 

with the same ~ and 

discontinuous). 

the entropy is con- 

(2.2) 

as above, then the transition is Ist order (entropy S 

ByBoltzmann'slaw, the probability P(q) of the order parameter q is given by (N = 

normalization factor) 

P (q) = N e - F/kBT 

Both free energy F and probability P are plotted in Figs. i and 2. 

(2.3) 
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P(q) 

F'(q) 

I T q ,"" 

t L 
L i ~ q  

Fig. 1 - Second order phase transi- 

tion.Free energy F(q) and 

probability density P(q) 

versus the order parameter 

q at different temperatures 

T.The locus of equilibrium 

points is displayed separat- 

ely in a q - T plane. 

P(q) 

. J 

T c - T  

Fig. 2 - First order phase transit- 

ion. Plots as in fig. I. 

In optics, even when interparticle interactions are negligible as in a very dilute 

gas, there may be particle correlations due to the common radiation field. Even 

though such situations could be described classically, they require the large rad- 

iation fields provided by the laser to be seen experimentally. 

Gen~rally, a quantum optical device is an open system which is fed by a source of 

energy and radiates electromagnetic energy toward a sink. Since we are talking of 

radiating systems, the relevant parameter is the field E. We shall show situations 

such as 
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i) single mode laser threshold, 

ii) threshold of a laser with a saturable absorber, 

iii) optical bistability, 

where the E field is the order parameter in the Landau sense. 

There are however transition phenomena as 

iv) superfluorescence 

which are also characterized by a threshold but where the order parameter is an atomic 

variable, and the field E appears only as a transient pulse. 

In the first case we can plot probability distributions of E which are topologically 

equivalent of fig.l and 2, hence we can draw analogies with 2nd and Ist order phase 

transitions. 

The onset of a quantum optical transition is related to the value of an adimensional 

cooperation parameter 

C - = (constant)- f (2.4) 
~K 

36 
where ~ is the square of the cooperative emission rate and is proportional 

to the density ~ of radiating atoms, ~ is the atomic relaxation rate and K is 

the loss rate of the electromagnetic field. In the case of a cavity made of two fac- 

ing mirrors with reflectivity R at a distance L, K is 

(I - R) (2.5) K = L 

whereas for a lump of material of length L without mirrors, it is 

m = c/L (2.5)' 

Cooperation in quantum optics was first considered by Dicke 25,who introduced the 

idea of superradiance. 

In order to cooperate, however, the atoms must exchange information, that is, put- 

ting them on a line, the "last one should "see" the radiation of the first one before 

36 
decaying. By this argument, we find for the cooperation rate 

Putting for ~ the usual expression for the spontaneous emission rate, we have 

% 

~ -- ~ ~ Eo ~ (S.I. units) (2.7) 

where ~ is the emission frequency, ~o the vacuum dielectric constant and /~ 

the electric dipole moment of the radiative transition. 



364 

The cooperative rate comes from radiation damping considerations but we must account 

that the two partners, atoms and field, are also each coupled with its own reservoir 

which introduces its own loss rate. A simplified picture can be given in terms of 

coupled Maxwell and SchrSdinger equations written for a field coupled with N two 

level atoms by a resonant transition at frequency ~ . Writing field E, polariza- 

tion~ and population inversion density D in terms of adimensional slowly varying 

variables (V is the interaction volume) 

E = ~ ' ~  O. ( × e J  g + c . ¢ - .  

p = -- ~ ( a t , e )  ~ + c . c .  

V 
(2.8) 

D = ~ A ( , , , e )  
v 

the coupled equations reduce to 

~ a  

where ~ ~ 

37 
(at resonance a and S 

- o. - N / z  ) 

are real quantities) 

(2.9) 

(2.10) 

is the coupling constant and K , .- ~ ~, i~i| are loss rates. The normalization is such 

2 
that a = n is the photon number and ~ the number of inverted atoms in the volume 

V. N is a source term. For an absorbing medium in the ground state (no pumping) it 

must be changed into - N . We neglect here the space derivative ~ / ~ x . 
tot 

Care can be taken by transforming to a suitable moving frame both in the cases of an 

37 38, 39 
amplifying and of an unexcited medium. 

To give the order of magnitude, for a dilute gas of atoms with allowed transitions 
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in the visible and for V _~ I cm 3 , it is 

g ~ 104 s-i ' ~ ~ ~11 ~ ~ 108 s-i 

and (2.11) 

K s-J 107 s -I i010 -I or ~ s , 

depending on whether the gas is in a laser cavity or distributed over a length of 

some centimeters, without mirrors at the ends. 

Relations (2.11) suggest two distinct time regimes depending on whether K ~< 

or K >>~ . In the first case the fast atomic variables S, ~ relax toward their 

equilibrium values, while the slow variable a changes little. Hence a is the 

order parameter. In the second case the field escapes rapidly from the interaction 

volume and the atomic variables are the slow ones. 

It will be shown that 

i) neglecting all losses, the field-atoms coupling gives rise to collective pulses 

with a characteristic time given by ~c ' 

ii) for ~>> K (adiabatic elimination of atomic variables) the field evolves with 

a rate ~Z/~ which must be larger than K to have a laser-like transition. This 

condition amounts to C > I . 

iii) for K >> ~ (adiabatic elimination of field variables) the atomic quantities 

evolve with a rate ~z / ~ which must be larger than T to have a superfluor- 

escent transition. This again is equivalent to C > i . 

2.I-THE LOSSLESS CASE 

2 
If ~ = 0, S + is a conserved quantity, 

iable ~ such that 

S = N/2 sin 
(2.12) 

= N/2 cos ~" 

It follows immediately that 

= 2 g a ; (2.13) 

replacing this in the first equation (2.9) for k=O one obtains 

= S~ z sin @ (2.14) 

which is a nonlinear pendulum equation, giving periodic solutions in terms of Jacobi 

functions 39, with pulse durations of the order of ~ c-l" Hence Yc is the nat- 

ural coupling constant of an atom-field system, independently from boundary eondi- 

hence one can introduce a new var- 
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tions or interactions with thermal reservoirs. 

2.2-SINGLE MODE LASER 

When 

field amplitude giving 

~r i + x  • 

Replacing S in the field equation 

& =  N m. - K ~L 
a" I ~' 'x~ 

Here we have introduced 

~ >>~ the last two equations can be solved at steady state in terms of the 

= ~c2 ~" ~ k ~ (2.15) 

x = ~ ~ ~'/~" (2.16) 

2 
~ince g/~ t,~ 10 -4 it takes a ~) 10 8 photons to have x ~ i. Hence for n < 10 8 

photons the saturation term in the polarization can be approximated as a cubic cor- 

rection and the field equation becomes 

= ~(C - i ) ~ - C X 3 J (2.17) 

where C is the cooperation parameter introduced in (2.4). 

2 
The steady stable solution x goes smoothly from zero to a non-zero value as C goes 

! 
from below to above 1 (fig. 3). For x one has a (c-l) = power law as for a 2nd order 

phase transition in the Landau model. 

LASER 

IEI a~ ~ p,,r. p 

/ 
C-I 

Fig.3 - Plot of intensity of the laser 

field versus the cooperation num- 

ber (C-I is proportional to dif- 

ference'between gain and losses). 

2.3-OPTICAL BISTABILITY 

Take the same configuration (atoms within a cavity) leaving the atoms in the ground 

19 
state and injecting an external field y. The steady solution is 

X 
y = x + C ----- (3.18) 
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Three plots of transmitted versus injected field are given in fig. 4 

for increasing atomic densities, that is, for increasing C values. 

For C ~ 0 the cavity is tuned to transmission I, hence transmitted and 

incident fields are equal. For C ~ 1 the system is in the linear abs- 

orption regime and there is very little transmitted field. For C ~ 1 

the system jumps discontinuously into the saturated regime where the 

atoms become transparent, hence returning to full transmission. 

By decreasing the impinging field one gets a hysteresis cycle peculiar 

of the Ist order phase transition. Since there is a region with two 

stable points the phenomenon is called optical bistability. 

OPTICAL E Q _ ~  r - - 1  ~ Er 
B ISTABIL ITY - ~  I J [ ~ 

incidenr tield E~o 

Fig.4 - Plots of transmitted 

field versus impinging 

field in an optical bi- 

stable device,for three 

different values of the 

cooperation number C. 

2.4- ~ PULSES 37 AND SUPERFLUORESCENCE 26 

When K >>~ the field can be adiabatically eliminated giving 

a = ~ S , (2.19) 
k 

-I 
For times shorter than ~ , one can neglect atomic losses and make 

use of the ~- representation. 

By combining (2.12) and (2.13) with (2. I~ ) one obtains 

37 
The solution is (so called 7"[ pulses) 

a ~ sech (t - t D ) / ~ (2.21) 

2 
It shows a duration determined by the competition between ~c and the 

loss rate K. In order to have the cooperation, this duration must be 

shorter than the single atom decay. The threshold condition is then 

that is C > I, as in the above cases. 
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The delay time t depends on the initial conditions. If the system is prepared in 
D 

the fully excited state, it can decay only by spontaneous emission (superfluorescenee) 

26 
thus requiring a quantum theory for the evaluation of t D 

3-STATISTICAL DESCRIPTION OF QUANTUM OPTICAL TRANSITIONS 

Let us consider a nonlinear stochastic system described by a macroscopic variable q 

and driven by a dissipation term k(q) and a stochastic force f(t) which is Gaussian 

and $ -correlated in time with correlation amplitude 2 D(q). 

The Langevin equation describing the motion is 

~ k(q) + f (t) (3.1) 

7 
and the Fokker-Planck equation for the time dependent probability density P(q,t) is 

If, as in many quantum optical cases, the diffusion term D does not depend on q and 

k(q) admits a potential 

V (q) =- ~k (q) dq (3.3) 

then the stationary solution of (3.2) is immediately written as 

-V(q)/D 
P (q) = N ~ (3.4) 

where N is a normalization constant. 

By comparison with distribution (2.3) for an equilibrium system, the pseudo-potential 

V(q) plays the same role as the free energy, and situations as in fig. i and 2 can 

be foreseen. 

Indeed, "ad hoe" addition of stochastic forces accounting for noise processes to the 

laser equation transforms it into a nonlinear Langevin equation with a pseudo- 

potential 

V (x) K (C I) x 2 ~ C X ~ = - - -  - + - -  (3.5) 

2 4 

This indicates that the laser threshold is as a 2nd order phase transition in an e- 

quilibrium system. The role of the temperature as control parameter is here taken 

by the density of excited atoms which changes C. 

Some extra care must be taken since a radiation field is a complex parameter. Plot- 

ting each of the curves of fig. I versus a complex parameter on a complex plane 

x = I xl e z~rather than on an axis x, potential and probability curves become sur- 

6, 35 
faces having rotational symmetry . While the modulus has the constraint already 
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discussed, the phase ~ is free to diffuse. Hence this will be the ultimate noise 

for a laser highly above threshold. If the rotational symmetry is broken by the in- 

jection of an external signal 40, this symmetry break leaves a single minimum 41 , 

forbidding the coexistence of two stable points and hence a discontinuous jump. 

Things are different if the external signal is injected into a passive medium (opt- 

ical bistability). From Sec. 3 one can immediately evaluate the following pseudo- 

42 
potential 

V (x) l~l~ = ~ + ~ I~ ~ + ~ C ~ -- |Xl ) (3.6) 

which under suitable power expansion, gives curves like fig. 2, showing the analogy 

with a Ist order phase transition. 

The time dependent solution P (q / q, t) is simple in the case of a linear force 
O 

k(q) = "~ q . 

In such a case the time dependent probability is a Gaussian with its center value 

decaying exponentially to zero at a rate ~ and its variance given by D/~, 
( 

~_. ~ <@-- L- ~ )  " (3.7) 

Linearizing the laser equation one sees that = C - I. Hence at threshold (~= O) 

we expect a divergence in the fluctuations and an infinite relaxation time (critical 

slowing down). In fact the infinities are smoothed by the nonlinearities. 

The slowing down at threshold shows that even in a many-mode system one can make a 

description in terms of the critical field amplitude (order parameter) since this 

becomes the slowest variable. 

6 
In fig. 5 we report the stationary intensity distributions for the laser after 

eqs. (3.4) and (3.5). 

To make comparisons with experimental data, we must account for the change in stat- 

istics due to the photon process. 

For the superfluorescent case, eq. (2.21) describes the motion of a point on a sphere 

Indeed, if for a moment we leave our oversimplified outlook and consider the Fokker- 

Planck equation as a suitable phase-space density evolution, arising from a quantum 

Master equation, it is very convenient to choose a diagonal representation for the 

density operator of the system, so that the weight-~function of the diagonal projec- 

tion is the quantum equivalent of the classical probability P(q). In the field case 
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this is done in the coherent state representation 

points on a complex plane. 

0.4 -- • I I I I ~i; 

Ws~ 
I 

0.3 

I - - 2  

O.2 

a-O O . ' l ~  , 

1 
where states are mapped as 

Fig.5 - The stationary laser distribution 

as a function of the normalized 

intensity, for different pump 

parameters (Ref.6) 

0 2 4 6 8 ~ F~ 

43 
In the atomic case this is done in the atomic coherent state representation , 

where states are mapped as points on a sphere. Projecting on a plane tangent on a 

44a 
pole of the sphere one obtains a single Fokker-Planck equation in a plane 

44b 
Otherwise one can carry the calculation on the sphere . In both cases one obtains 

26 
results equivalent to the Master equation treatment 

44a 
The Haake-Glauber plane equation looks like the equation for a forced system, 

= + i~I" q + f(t) 

which~starting from an initial point q diverges. A nonlinear transformation back 
o 

on the sphere gives the hyperbolic sechant behaviour for the field plus the anomalous 

fluctuations discussed in Sec. 5. 
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4-PHOTON STATISTICS AND FLUCTUATIONS IN QUANTUM OPTICS 

Consider a photodetector illuminated by a light beam. By an electronic gate lasting 

for a time T, the number n of photons annihilated at the photosurface in T is count- 

ed. The random variable n has a statistical distribution p(n) that can be determined 

by iterating the above procedure for a large number of samples. 

In fig. 6 we show an experimental plot of the statistical distribution of photocounts 

45, 46 
p(n) versfls the number of counts 

n = ~ ~ I> T • (4.1) 

I p is the average intensity, T the gating time, ~ a constant accounting for the 

quantum efficiency of the detector plus other instrumental factors. The three curves 

refer to three physical cases which are indistinguishable from the point of view of 

classical optics: same average photon number ~ n ~ , same diffraction-limited plane 

wave, same line-width ~ filtered out in such a way that 

From the point of view of PS, the three radiation fields are dramatically different, 

as seen from the figure. 

The three fields L, G, S correspond to the following cases: L comes from a stabil- 

ized single mode well above threshold. A moment analysis shows that it is well ap- 

proximated by a Poisson distribution with a variance 

~A~ > = ~ > . (4.2) 

G is obtained by scattering L over a collection of microparticles in Brownian motion, 

being sure that the correlation time be longer than T, and then putting up a diffrac- 

tion-limited plane wave at a given angle. A moment analysis shows that it is a Bose- 

Einstein distribution with a variance 

£~z > - ~> ~ I ~ <~> ) (4.3) 

S is the superposition of L and G over the same spatial mode. 

A heuristic view of the photodetection process explains the above results, without 

1 
recurring to the theory . If the field is uniform as we expect for a stabilized 

laser the photons,being particles with zero mass, can not be localized; hence there 

is no a-priori correlation between two annihilation events at two different points 

either in space or in time. The photocounts from a single detector whose average 

number is proportional to the square field and the measuring time T, 

~n ~ = IE !2 T ~ (4.4) 
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( ~ = quantum efficiency of the detector), must then be distributed as 

a Poissonian, i.e. t 

- ~ ~> -,~ 
p(n) = K (E, T i n) = ~ ~ (4.5) 

This is shown in fig. 7~. 

If now the complex field is randomly distributed with a statistics PI 

(E, t) and each measurement lasts for a time T much smaller than the 

coherence time ~ (in order to have a constant field within each sample) 
e 

then we must average the detector statistics (4.5) over the field stat- 

istics 

p(n, T, t) = JK (E, T ~ n) PI (E, t) d2E (4.6) 

In fig. 7 the results are shown pictorially in the three cases of fig.6. 

8 
I 
o 

o5 

~4 

~3 

~2 

\, \ °'o.~ 

\. \ "'- 

• ,~ ° ' ° ' , ~ . o . "  

D I0 20 30 - 40 50 60 

channel number 

Fig. 6 - Photocounts distributions obtained by 

sampling at equal time intervals three types of 

radiation fields 

L = laser field from a stabilized single-mode laser 

G = Gaussian field 

S = linear superposition of L and G onto the same 

space mode (after Ref.46) 

A single p(n,t) gives only an integrated information on the time evolu- 

tion of the field. By a suitable set-up one can measure the joint dis- 

tribution p(n , t I ; n 2 , t2) and then evaluate all cross moments or 

correlation functions 

k ~ (4.7) 
G(2k , 2~) (t, / i~ z ) ~ < ~, ~ > 
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and fully characterize a Markov field. However, often one is interested 

only in the first cross moment (intensity correlation) 

G(2 , 2) 
(t I , t2) = <n I n 2 > (4.8) 

This can be obtained by a single correlator. 

For more details, see Ref. 47 , 48. 

~'Re(E) P(E) P(~)~ 
~Im(E) 

P (EIA' p(n) 

n ~ 

Fig. 7 - Qualitative plots of the field 

and photon statistical distributions in 

the cases of an ideal coherent field of 

a thermal equilibrium field (Gaussian 

with zero average) and the superposition 

of the two. 
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5-STATISTICAL EXPERIMENTS IN QUANTUM OPTICS 

5.1 - WHAT WE EXPECT FOR LASERS 

From the phenomenological description of Sec. 3 we expect at threshold 

the appearance of a nonzero order parameter, a large increase in fluc- 

tuations and a critical slowing down. To correct that picture we must 

add that 

i) the laser equation is nonlinear, hence there is neither divergence 

in the fluctuations, nor zero line-width. The infinities are smoothed 

by the nonlinearity and the theoretical expectations are plotted to- 

gether with the experimental points in the coming figures 8-11; 

ii) the laser field is a complex parameter which should be described 

in modulus and phase: 

E = fEl ei% 

2 
The photon statistics destroys phase information because n N IE I 

Phase information is recovered by performing an interference experim- 

50 
ent with two independent lasers , so that the output intensity is as 

2 (*E). 
n ~IEI + E2 ( =  I I + 12 + 2 Re E 1 • 2 

10 
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~:' 0.5 

OZ. 

0 3  

02 

O1 

0 
70 

\ .  
\. 
\ 

10 I 

M,/M,o 

"\. 
\. 

10° 10' 

Fig. 8 - Measured and theor- 

etical values of the reduced 

second order factorial moment 

of the photon distribution 

H2= <n (n-l) > / ~n > I 

Versus the intensity M I nor- 

malized to the threshold 

value MIO (Ref. 52) 
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In order to interfere the laser field with itself at a later time,one 

has to build a very long Michelson interferometer. This was done in- 

51 
deed and the experiments agree with the nonlinear theory at thres- 

hold. For phase fluctuations above threshold, we expect a phase dif- 

fusion process which yields a stationary probability distribution,with 

a very definite modulus as in fig. 1 when q becomes very large and the 

spread of P(q) much smaller than q but with a phase completely uncer- 

tain. The lack of monochromaticity of a laser above threshold is then 

due purely to phase fluctuations. These can be shown to be inversely 

2 
proportional to the emitted power ~ E I , that is, the coherence 

time of the laser for phase fluctuations becomes longer as the output 

field increases (Townes formula) 

" r ' ~  ,,., l E l  ~ , 

iii) The description of Sec. 3 refers to stationary statistical pro- 

cesses. In Sec. 5.4 we present some time-dependent statistical features 

without equivalent in thermodynamic phase transitions and whose relev- 

24,34. 
ance in nonequilibrium systems is being recognized in these years 

5.2-INTENSITY FLUCTUATIONS OF LASERS 

In this section we describe the experimental results obtained by means 

of the PS method in the study of the statistics of the e.m. field of a 

stabilized laser operating in different conditions. The measurements 

were done on a 6328 A He-Ne laser, single mode, with one mirror sup- 

ported by a piezoceramic disc in order to stabilize against fluctua- 

tions and to move the mode position with respect to the atomic line 

(for details see Ref. 2). 

The measurement of p(n) was performed as described in Sec. 4. For com- 

paring experiments and theory we use the second reduced factorial mom- 

ent of the photocount distribution 

H - 1 = F / F - 1 (5.1) 
2 < ~>L 2 1 

which goes from 1 (Gaussian field distribution, well below threshold) 

to O for an amplitude-stabilized field (well above threshold), and the 

third one 

H 3 = < ~>~ - i = F 3 / FI - I (5.2) 
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which goes from 5 (Gaussian distribution) to 0 (amplitude-stabilized field) (Fig. 8, 

52 
9) 

From the stationary solution of the dynamic laser equations the distribution of pho- 

4-6 
tocounts and the associated factorial moments can be derived One can see from 

the figures that the agreement between experiments and theory is very good. 

C'3 
I 

C 
-2 

tO 

\ 

\ 

\ 
-I 0 

I0 10 I0 
MI/MIo 

Fig.9-Measured and theoretical val- 

ues of the reduced third order fac- 

torial moment of the photon distrib- 

ution 
3 

H3= <n(n-l)(n-2)> / ~n> i 

(Ref. 2) 

Measurements of the power spectrum of the intensity fluctuations for a He-Ne laser 

54 
both below and above threshold were first reported by Freed and Haus . Since those 

measurements left about 2 decades of intensity around the threshold unexplored, it 

was possible to interpret them with accuracy by a linear model, hence they left open 

55 
the possibility of zero width at threshold. In a later experiment the threshold 

region was thoroughly explored. Here a comparison with the results of the nonlinear 

6 
theory was required 

We report in fig. i0 the measurements which show good agreement with theoretical 

predictions. 

In later measurements exploiting a nonlinear correlation technique it was possible 

to attribute separate values to the main eigenvalues in the series of exponentials 

57 
describing the decay of intensity fluctuations at threshold (fig. Ii) 



377 

Io 2 

i o  c 

2 3 4 
1o Io Io _ _  

1 _ _ 3 _  ~ q I I - - . _  J 

10-' 100 10' 
I / I  o 

"- 16 - 8  3 0 3 6 10 

Fig.lO-"Effective"linewidth 

~Leff.of the laser intensity 

fluctuations versus the intens- 
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hold value I 
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Fig.ll- Relaxation rates 

of the laser intensity 

fluctuations. The full cur- 

ves represent the theoret- 

ically predicted results. 

5.3-PHASE FLUCTUATIONS IN LASERS 

Calling by x(t) the complex amplitude of the laser field, the first-order correla- 

tion function 

G (1) (t) = (×~(~J × (o)> 

has a decay depending on both phase and amplitude fluctuations. The decay rate would 

have a divergence in asymptotic (below and above threshold) theories which is smoothed 

by nonlinearity 6. Well above threshold, where the amplitude is stabilized, the res- 
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idual linewidth is mainly due to phase fluctuation. A measurement well above thres- 

hold would then give the "quantum phase noise". 

A measurement in the threshold region was possible by building a very long folded 

51 
Michelson interferometer . Fig. 12 shows the good agreement with the theory. 

10 5 

10 4 

.C 

I0 3 

10 2 

i"\ 
T h r e s h o l d _  

i i \ 
I 

I I I 
iO -10 10 9 10 8 lO-? 

Laser  power [Watts] 
1'0-6 

Fig.12-Experimental linewidth ver- 

sus laser power (circles). 

The solid curve represents the 

theoretical prediction 

(Ref. 51) 

21, 22 
5.4-TRANSIENT LASER FLUCTUATIONS AROUND THRESHOLD 

By the joint use of a Q-switched gas laser and of PS a non-stationary statistical 

ensemble can be studied, measuring the time evolution of a laser field during a fast 

build-up. 

We put a Kerr cell within a single-mode laser cavity. Starting with some pre-set 

pump and cavity parameters, but with the optical shutter closed, the Kerr cell is 

switched "on" at the instant t=O. The laser field undergoes a transient build-up, 

from an initial statistical distribution corresponding to the equilibrium between 

gain and losses far below threshold, up to an asymptotic condition above threshold. 

At some later time ~ we perform photocount measurements for a measuring interval T, 

very small compared to the build-up time which is in our case of the order of some 

microseconds. 

Once a steady-state condition has been reached, an amplitude-stabilizing operation 

is performed by sampling the laser output and comparing this with a standard refer- 

ence signal. This is equivalent to 'preparing' an identical initial state for a suc- 



379 

cessive measuring cycle. 

After the sampling, the shutter is switched off for about i0 ms. At 

the end of this interval the shutter is again switched on and the above 

described cycle of operation is repeated. In this way we collect an 

ensemble of macroscopically identical events. By successively varying 

we obtain the time evolution of photocounts distribution p(n,T,= ). 

21 
A set of experimental results is shown in Fig. 13 The average pho- 

tocount number ~ n > and the associated variance ~ ~ L> = ~ >  -- <~ 

22 
are reported as a function of the time delay in figures 18 and 19 

One can see a transition from a Bose-Einstein type distribution for 

initial times to a Poisson-like distribution for long delays. But, at 

variance with the stationary field distributions of fig. 5 the inter- 

mediate distributions are much wider, showing large transient fluctua- 

tions. 

~O0,-TT I 

i l l  e / l \  ~ ~ S6* ,~  

50 100 150 

ChanneI number 

Fig.13- Experimental statistical distributions with dif- 

ferent time delays obtained on a laser transient. The 

solid lines connect the experimental points which are not 

shown to make the figure clearer. All distributions are 

normalized to the same area. (Ref. 21). 
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Solid lines in fig. 14 and 15 represent theoretical results computed 

with a suitable choice of parameters for best fit with the experimen- 

tal points. 

(n> 
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5O Io0 

TIME DELAY (~sec) 

Fig.14-Evolution of the aver- 

age photon number <n> inside 

the cavity as a function of 

the time delay .Solid lines 

represent best-fit results 

computed from the theory of 

Scully,Lamb and Sargent.(Ref.22) 
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1o 8 
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TIME DELAY ~sec) 

Fig.15-Evolution of the var- 

iance<~%>of the statistical 

distribution of photons in- 

side the cavity,as a function 

of the time delay. Solid lines 

represent theoretical results. 

(Ref.22). 

61 
Similar measurements were later reported by other groups The 

latter experiment was performed closer to threshold by meansof a Poc- 

6 
kels-cell shutter. The results agree with the computation of Risken 

It was possible to fit the data with a phenomenological theory in 

terms of the semi-classical evolution n ( ~ ; n o ) depending on the ini- 

tial photon number n , 
o 

n(% ~o) = (5.3) 
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then evaluating the various moments by using as a weight function the 

initial statistical distribution p(n ) of the photons below threshold. 
o 

22 
By introducing a scaled quantity 

Z = ("~o = ~ ' ~ , ~ )  (5.4) 

it is possible to show that the ratio between variance and mean photon 

number squared is Only a function of z. 

r m < ~ >  Z (~- ~! ) - ~I ~ = (5.5) 
<~>~ C I . H )z 

where H = H(Z) depends only on ~. 

Eq. (5.5) gives therefore a universal function of the laser transient. 

The ratio r is plotted in fig. 16. 

0.1 

o experln~nt a 

• b 

c 

I J 
10 1000 Z 

Fig.16-Relative variance in the 

experiments of fig.14,15 plotted 

versus the scaling parameter z. 

Larger z values correspond to 

small delays.The solid line comes 

from the phenomenological model 

of Ref. 22. 

These scaling considerations were later 23, 24 extended to any nonlin- 

ear stochastic system crossing an instability at a rate so fast that 

initial conditions play an essential role. 



5.5 - EXPERIMENTS ON OTHER QUANTUM OPTICAL TRANSITIONS 

We show briefly some data on superfluorescence and optical bistability, 

noting that in both cases there are only preliminary experiments, and 

it is impossible to make any statistical inference either on average 

behaviour or fluctuations. 

The cleanest experiment on superfluorescence is that of Ref. 30 where 

care has been put to satisfy the threshold conditions and the cooperat- 

ivity requirements discussed in Sec. 2, that is, 

or, in words: escape time < cooperative rate <pulse duration < de- 

lay time between preparation and occurrence of the maximum < atomic 

decay rates (both homogeneous and Doppler). 

Furthermore, the duration of the preparation pulse was chosen consist- 

ently shorter than the delay time. All parameters beside t have been 
D 

given in Sec. 2. Starting from the fully excited state, tD requires 
quantum considerations 27 and is given by 

where = k / irCz is the pulse width. 

In fig. 17 some superfluorescent shapes are given for different atomic 

densities. 

ATOMIC BEAM 

n. I 9 x 10" cm-J 

Fig.17-Superfluorecence pulse 
a t 2 . 9  m i n t h e 7 P  t o 7 S  P 3 / 2 k 

transition in Cesium atoms- 
L is the sample length. Norrnal- 
ized single-shot shapes for sev- 
eral densities n (Ref.30) 
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Fig. 18 is a plot of ~ versus 
D R 

To decide how much of the phenomenon is classical and the relevant role 

of the initial quantum fluctuation one should measure the variance in 

the photon statistics. 

The optical bistability in Na atoms was measured in Ref. 18 and some 

data are given in fig. 19. 

The phenomenon depends sensitively on the mutual frequency positions 

of injected field, cavity and atomic resonance. 

Here also there is a lack of statistical experiments to make compari- 

42 
sons with the theoretical previsions on spectrum and photon statistics 

1 i 1 I I I I ' 1  

2 0 -  

~a 1 0 -  ~ ~e o, 

i 
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o 
o 

I , L I i I l i  

0.1 0.2 0 5  1.0 2.0 
r R ( n s )  

Fig.18 - Delay time ~D of the superfluorescent pulse with 

respect to the preparation time as a function of the Super- 

fluorescent characteristic time "~ (Ref. 30) 
R 
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Fig.19-(a)Optical bistability in Na vapor.The oscilloscope trace 

is dashed for increasing input intensities and solid for decreas- 

ing. (b)Characteristic curve,dependence on Fabry-Perot plate sep- 

aration is given in MHz. (Ref.18) 
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